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Announcements

• Account sheets available in section tomorrow
• Sign up for Piazza

• Assignment 0: due Friday, Feb. 1st, 11:59pm
• Homework 1: due Monday, Feb. 4th, 8:00am

•Waitlist...
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Today

• Color, Light, and Perceptions
• The basics
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What is Light?
• Radiation in a particular frequency range
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Spectral Colors
• Light at a single frequency
• Also called monochromatic (an overloaded term)

• Bright and distinct in appearance
R o y   G.   B i v

Reproduction only, not a real spectral color!
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Other Colors
•Most colors seen are a mix light of several frequencies

Image from David Forsyth

Curves describe spectral composition          of stimulus�(�)
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•Most colors seen are a mix light of several frequencies

Other Colors

Image from David Forsyth
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•Most colors seen are a mix light of several frequencies

Other Colors

Image from David Forsyth
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Perception -vs- Measurement

• You do not “see” the spectrum of light
• Eyes make limited measurements
• Eyes physically adapt to circumstance
• You brain adapts in various ways also
• Weird psychological/psychophysical stuff also happens
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Everything is Relative
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Everything is Relative
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Adapt
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Adapt
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It’s all in your mind...

13

14
Sunday, September 8, 13



15

Mach Bands
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Everything’s Still Relative
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Bezold Effect
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Perception
The eye does not see intensity values...
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The eye does not see intensity values...
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Perception

The eye does not see intensity values...
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Perception
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Perception
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Eyes as Sensors

• The human eye contains cells that sense light
• Rods
• No color (sort of)
• Spread over the retina
• More sensitive

• Cones
• Three types of cones
• Each sensitive to different frequency distribution
• Concentrated in fovea (center of the retina)
• Less sensitive

Image from Stephen Chenney
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Rods vs Cones
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Eyes as Sensors
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Monochromatic 

scotopic vision 

(low light levels) 

Chromatic 

photopic vision 

(high light levels) 
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Cones
• Each type of cone responds to different range of 

frequencies/wavelengths
• Long, medium, short
• Also called by color
• Red, green, blue
• Misleading:

“Red” does not 
mean your red 
cones are firing...

Normalized sensitivity curves
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Cones

• You can see that “red” and “green” respond to more more 
than just red and green...

Images from David Forsyth
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Cones
• Response of a cone is given by a convolution integral :

L =

Z
�(�)L(�)d�

M =

Z
�(�)M(�)d�

S =

Z
�(�)S(�)d�

continuous version of a dot product
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Trichromaticity

Eye records color by 3 measurements
We can “fool” it with combination of 3 signals

So display devices (monitors, printers, etc.) can generate 
perceivable colors as mix of 3 primaries

Cone Responses are Linear
Response to stimulus       is
Response to stimulus       is  
Then response to                 is 

Response to         is  

30

�1 (L1,M1, S1)

(L2,M2, S2)�2

�1 + �2 (L1 + L2,M1 +M2, S1 + S2)

n�1 (nL1, nM2, nS1)
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Cones and Metamers
Cone response is an integral

Metamers: Different light input                      produce 
      same              cone response
• Different spectra look the same
• Useful for measuring color

L =

Z
�(�)L(�)d� M =

Z
�(�)M(�)d� S =

Z
�(�)S(�)d�

�1(�),�2(�)
L,M, S
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Additive Mixing

Given three primaries we agree on
Match generic  input light with
Negative not realizable, but can add primary to test light
Color now described by 

Example: computer monitor [RGB]

α, β, γ

p1, p2, p3

� = �p1 + ⇥p2 + ⇤p3
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Additive Color Matching

Show test light spectrum on left
Mix “primaries” on right until they match
The primaries need not be RGB

Experiment 1
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Slide from Durand 
and Freeman 06
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Experiment 1
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p1     p2      p3  

Slide from Durand 
and Freeman 06

Experiment 1
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p1     p2      p3  

Slide from Durand 
and Freeman 06
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Experiment 1
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p1     p2      p3  

The primary color 
amounts needed 
for a match 

p1     p2      p3  

The primary color 
amounts needed 
for a match 

Slide from Durand 
and Freeman 06

Experiment 2
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Slide from Durand 
and Freeman 06
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Experiment 2
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p1     p2      p3  

Slide from Durand 
and Freeman 06

Experiment 2
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p1     p2      p3  

Slide from Durand 
and Freeman 06
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Experiment 2
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p1     p2      p3  p1     p2      p3  

We say a 
“negative” 
amount of p2 
was needed to 
make the match, 
because we 
added it to the 
test color’s side. 

The primary color 
amounts needed 
for a match: 

p1     p2      p3  

Slide from Durand 
and Freeman 06
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Color Matching Functions

r̄(�)

ḡ(�)

b̄(�)

Input wavelengths are CIE 1931 monochromatic primaries
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0

B@
�(�1)

...
�(�N )

1

CA

Using Color Matching Functions
For a monochromatic light of wavelength 
we know the amount of each primary
necessary to match it:

Given a new light input signal  

Compute the primaries necessary to match it
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�i

r̄(�i), ḡ(�i), b̄(�i)

Using Color Matching Functions
Given color matching functions in matrix form and new light

amount of each primary necessary to match is given by 
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C =

0

@
r̄(�1) . . . r̄(�N )
ḡ(�1) . . . ḡ(�N )
b̄(�1) . . . b̄(�N )

1

A

C�

� =

0

B@
�(�1)

...
�(�N )

1

CA

r̄(�)

ḡ(�)

b̄(�)
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CIE XYZ
Imaginary set of color primaries with positive values, X, Y, Z
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Rescaled XYZ to xyz
Rescale X, Y, and Z to remove luminance, leaving chromaticity:

Because the sum of the chromaticity values x, y, and z is always 
1.0, a plot of any two of them loses no information

Such a plot is a chromaticity diagram

x = X / ( X+Y+Z )
y = Y / ( X+Y+Z )
z = Z / ( X+Y+Z )
x+y+z = 1
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CIE Chromaticity Diagram
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Pure (saturated) spectral colors 

around the edge of the plot 

Less pure (desaturated) colors 

in the interior of the plot 

White at the centroid of 

the plot (1/3, 1/3) 

Gamut

Gamut is the chromaticities generated by a set of primaries
Because everything we’ve done is linear, interpolation between 
chromaticities on a chromaticity plot is also linear
Thus the gamut is the convex hull of the primary chromaticities

What is the gamut of the CIE 1931 primaries?
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CIE 1931 RGB Gamut
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R = 700 nm 

G = 546 nm 

B = 438 nm 

Other Gamuts  (LCDs and NTSC)
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Given three primaries we agree on
Make generic color with
Max limited by 
Color now described by 

Example: ink [CMYK]
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Subtractive Mixing

α, β, γ

W

Why 4th ink for black?

p1, p2, p3

� = W � (�p1 + ⇥p2 + ⇤p3)

Additive & Subtractive Primaries
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Additive & Subtractive Primaries
Incorrect to say “the additive primaries are red, green, and blue” 
• Any set of three non-colinear primaries yields a gamut
• Primaries that appear red, green, and blue are a good choice, but not the 

only choice
• Are additional (non-colinear) primaries always better?

Similarly saying “the subtractive primaries are magenta, cyan, and 
yellow” is also incorrect, for the same reasons
• Subtractive primaries must collectively block the entire visible spectrum, but 

many sets of blockers that do so are acceptable “primaries”
• The use of black ink (the k in cmyk) is a good example
• Modern ink-jet printers often have 6 or more ink colors
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Color Spaces
RGB color cube 
• Does not correspond very well to 

perception (e.g. distance between 
two points has little meaning)
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Color Spaces
HSV color cone

Lightness 

Hue 

Colorfulness 
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Color Spaces
RGB color cube
HSV color cone

CIE (x,y)

MacAdam Ellipses (10x)
Colors in ellipses indistinguishable from center.
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Color Spaces
RGB color cube
HSV color cone

CIE (x,y)

CIE (u,v)

Scaled to be closer to circles.
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Color Spaces
RGB color cube
HSV color cone

CIE (x,y)

CIE (u,v)
CMYK
Many others...
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Monitor Intensity and Gamma	


Monitors convert pixel value into intensity level
• 0.0 maps to zero intensity = black (well not quite)
• 1.0 maps to full intensity = white

Monitors are not linear
• 0.5 does not map to “halfway” gray, (e.g. 0.5 might map to 0.217)
• Nonlinearity characterized by exponential function

 
where   = displayed intensity and    = pixel value (between 0 and 1)
• For many monitors     is near 2 (often between 1.8 and 2.2)
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I = a�

I a
�

Determining Gamma
Suppose I know displayed intensity of a patch

Let viewer adjust pixel value    of nearby patch until match

How do we make a patch of known intensity?
60

I = a�

I = 0.5

0.5 = a�

a

� =
ln 0.5

ln a

Patch of known 

I = 0.5

Viewer adjusts pixel
values     until this 

patch visually matches
a
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Determining Gamma

http://www.cs.cornell.edu/Courses/cs4620/2008fa/homeworks/gamma.htm
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Dynamic Range
•Max/min values also limited on devices
• “blackest black” 
• “brightest white”

Jack Tumblin
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Fake High Dynamic Range
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Tone Mapping

Kirk and O’Brien 2011
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Rods Contribute to Color

OR/G=M-L + fR/G (L,M,R)
OB/Y=S-(L+M) + fB/Y (L,M,S,R)
OL   =L+M + fL (L,M,R)

OL

OB/Y

OR/G

L

M

S

R
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Color Phenomena

• Light sources seldom shine directly in eye
• Light follows some transport path, i.e.:
• Source
• Air
• Object surface
• Air
• Eye
• Color effected by interactions
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Reflection

• Light strikes object
• Some frequencies reflect
• Some adsorbed
• Reflected spectrum is light times 

surface
• Recall metamers...

Unknown?
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Transmission

• Light strikes object
• Some frequencies pass
• Some adsorbed (or reflected)

Unknown?
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Scattering

• Interactions with small particles in 
medium
• Long wavelengths ignore
• Short ones scatter

Unknown?
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Interference

•Wave behavior of light
• Cancelation
• Reinforcement
•Wavelength dependent

Unknown?
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Iridescence

• Interaction of light with
• Small structures
• Thin transparent surfaces

Unknown?
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Iridescence
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Iridescence
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Fluorescence / Phosphorescence

• Photon come in, knocks up electron
• Electron drops and emits photon at other frequency
•May be some latency

• Radio active decay can also emit visible photons
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Fluorescence / Phosphorescence
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Black Body Radiation

• Hot objects radiate energy
• Frequency is temperature dependent
•Moderately hot objects get into visible range
• Spectral distribution is given by

• Leads to notion of “color temperature”

€ 

E λ( )∝ 1
λ5
⎛ 
⎝ 

⎞ 
⎠ 

1
exp hc kλT( )−1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
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Black Body Radiation

HyperPhysics 77
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