CS-184/284a: Computer Graphics

Lecture #1: Introduction, Overview, and Image Basics

Prof. James O'Brien University of California, Berkeley

V2013-F-01-1

-

Today

- Introduction and Course Overview
- Assignments ASO and HWT
- Digital Images

The Subject: Computer Graphics

- Computer Graphics:
- Using computers to generate and display images
- Issues that arise:
- Modeling
- Rendering
- Animation
- Perception
- Lots of details...

3

Computer Graphics

- Applications (in other words, why we care)
- Movies
- Video Games
- Simulation
- Analysis
- Design
- Others...

- Applications (in other words, why we care)
- Movies
- Video Games
- Simulation
- Analysis
- Design
- Others...

From Star Wars Episode 1, Lucasfilm Ltd.

5

Computer Graphics

- Applications (in other words, why we care)
- Movies
- Video Games
- Simulation
- Analysis
- Design
- Others...

From Finding Nemo, Pixar Animation Studios

- Applications (in other words, why we care)
- Movies
- Video Games
- Simulation
- Analysis
- Design
- Others...

_

Computer Graphics

- Applications (in other words, why we care)
- Movies
- Video Games
- Simulation
- Analysis
- Design
- Others...

- Applications (in other words, why we care)
- Movies
- Video Games
- Simulation
- Analysis
- Design
- Others...

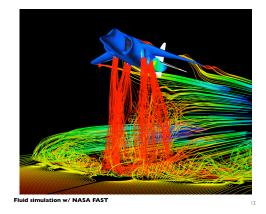
From America's Army

9

Computer Graphics

- Applications (in other words, why we care)
- Movies
- Video Games
- Simulation
- Analysis
- Design
- Others...

Image from CAE Inc


- Applications (in other words, why we care)
- Movies
- Video Games
- Simulation
- Analysis
- Design
- Others...

11

Computer Graphics

- Applications (in other words, why we care)
- Movies
- Video Games
- Simulation
- Analysis
- Design
- Others...

- Applications (in other words, why we care)
- Movies
- Video Games
- Simulation
- Analysis
- Design
- Others...

13

Course Topics

- Image representation and manipulation
- 2D and 3D drawing algorithms
- Object representations
- Rendering
- Animation
- Interaction techniques

People

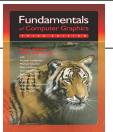
James O'Brien

Fu-Chung Huang Aayush Dawra

Send class related email to cs | 84@imail.eecs.berkeley.edu

15

Contact Information


- Class web site:
- http://inst.eecs.berkeley.edu/~cs184
- Handouts assignments, **etc**. will be posted there
- Lecture notes posted there (hopefully) before classes
- Discussion group:
- Piazza discussion group
- https://piazza.com/berkeley/fall2013/cs184
- Not reading discussion group... bad idea
- Staff email addresses, office hours, etc on website

Computing Resources

- Class accounts handed shortly
- Can also use CS Labs
 - Linux
 - Windows
- Mac

17

Text Book

- Fundamentals of Computer Graphics by P. Shirley, S. Marschner, et al.
 - * Get the current version
- Also handouts and other supplemental material will be provided
- See other books listed in course information handout

Grading

- Assignments: 40%
- Mix of written and programing
- Average I or 2 weeks to do them
- Midterm: 20%
- Wednesday, October 23, in class
- Final Project: 20%
- Thursday, Dec. 12, 11:00 am 2:00 pm, Soda 5th floor
- Final: 20%
- Wednesday, Dec. 18, 7:00 pm 10:00 pm
- Check **now** for conflicts!

Prerequisites

- You must know how to program C or C++
 - Big final project, several programing assignments
- No hand holding
- Data structures (CS61B)
- Math: linear algebra, calc, trig

9			
00			
20			

Waitlist Quite a few people will drop Hopefully everyone will fit...

21

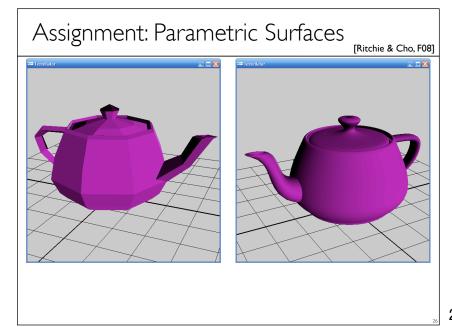
Class Participation

- Reasons to participate
- More fun for me and you
- You learn more
- I won't give stupid little annoying quizzes in class
- How to participate
- Ask questions
- Make comments
- Stupid questions/comments
- That's okay

Assignments #1 and #2

- Assignment #0
- Setup CS184 account and let us know who you are
- Get very simple OpenGL program working
- Due Friday Sept. 13th, Midnight
- Homework #1
- Tests math prerequisites
- Due Friday Sept. 13th, 5pm

23


24

Assignment: Shading [Ritchie & Cho, F08] Diffuse Only Diffuse & Specular Diff. & Spec. & Texture Diff. & Spec. & Texture Bump Mapping

Tuesday, September 3, 13

Assignment: Ray Tracing [Ritchie & Cho, F08]

25

Tuesday, September 3, 13

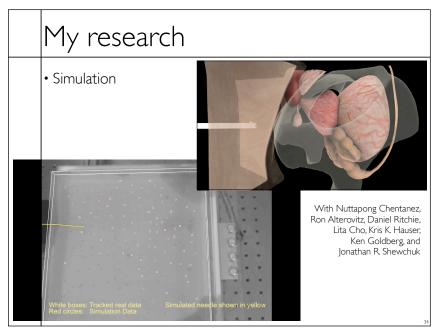
Final Project: Open Ended Your image/animation/game here!

27

Academic Honesty

- If you use an external resource cite it clearly!
- Don't do things that would be considered dishonest... if in doubt ask.
- Cheating earns you:
 - An 'F' in the class and
 - Getting reported to the University
 - No exceptions.

Questions?



My research • Simulation Cloth Draping With Huamin Wang and Ravi Ramamoorthi

31

Simulation With Rahul Narain and Armin Samii Adaptive Anisotropic Remeshing for Cloth Simulation Rahul Narain, Armin Samii, James F. O'Brien University of California, Berkeley SIGGRAPH Asia 2012

My research • Simulation With Rahul Narain and Tobias Pfaff Simulation Mesh

Tuesday, September 3, 13

My research

• Simulation

With Adam Kirk

35

My research

Forensics

With Hany Farid

My research

• Forensics With Hany Farid

37

My research See my webpage for more information and other projects... I Description of the projects of the project of the pr

38

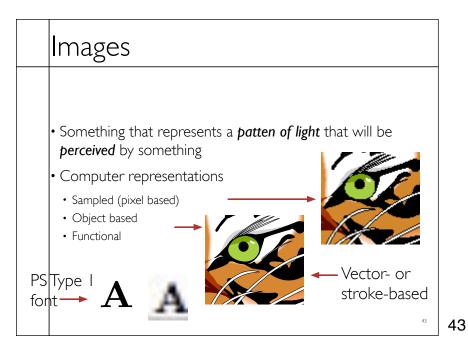
- Something that represents a pattern of light that will be perceived by something
- Computer representations
- Sampled (pixel based)
- Object based
- Functional

39

Images

- Something that represents a *patten of light* that will be *perceived* by something
- Computer representations
- Sampled (pixel based)
- Object based
- Functional

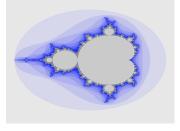
- Something that represents a patten of light that will be perceived by something
- Computer representations
- Sampled (pixel based)
- Object based
- Functional



41

Images

- Something that represents a patten of light that will be perceived by something
- Computer representations
- Sampled (pixel based)
- Object based
- Functional

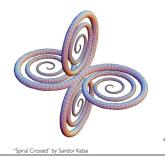


- Something that represents a patten of light that will be perceived by something
- Computer representations
- Sampled (pixel based)
- Object based
- Functional

Well, this *used* to be in an object based representation...

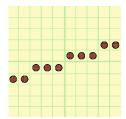
- Something that represents a patten of light that will be perceived by something
- Computer representations
- Sampled (pixel based)
- Object based
- Functional

Mandelbrot Fractal Plot by Vincent Stah

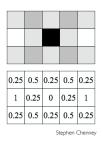

45

Images

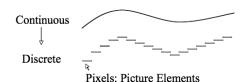
- Something that represents a *patten of light* that will be *perceived* by something
- Computer representations
- Sampled (pixel based)
- Object based
- Functional


Function→Polygons→Pixels

Storing Images


- Object and Function representations basically arbitrary ...later...
- Raster Images
- 2D array of memory
- Pixels store different things
 - Intensity
 - RGB color
 - Depth
 - Others...
- May be mapped to special HW

47


Storing Images

- Object and Function representations basically arbitrary ...later...
- Raster Images
- 2D array of memory
- Pixels store different things
 - Intensity (scalar value, e.g. float, int)
 - RGB color (vector value)
 - Depth
 - Others...
- May be mapped to special HW

Discretization

- Real world and "object" representations are continuous.
- Raster images have discrete pixel *locations* and discrete pixel *values*

Stephen Chenney

• We will see problems from this soon...

49

Monitor Intensity and Gamma

Monitors convert pixel value into intensity level

- 0.0 maps to zero intensity = black (well not quite)
- 1.0 maps to full intensity = white

Monitors are not linear

- 0.5 does not map to "halfway" gray, (e.g. 0.5 might map to 0.217)
- Nonlinearity characterized by exponential function

$$I = a^{\gamma}$$

where I= displayed intensity and a= pixel value (between 0 and 1)

• For many monitors γ is near 2 (often between 1.8 and 2.2)

Determining Gamma $I = a^{\gamma}$

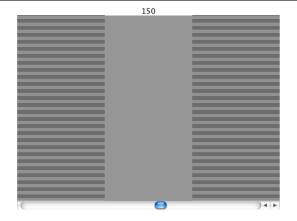
Suppose I know displayed intensity of a patch $I=0.5\,$

$$0.5 = a^{\gamma}$$

Let viewer adjust pixel value a of nearby patch until match

$$\gamma = \frac{\ln 0.5}{\ln a}$$

Patch of known


$$I = 0.5$$

Viewer adjusts pixel values ${\boldsymbol a}$ until this patch visually matches

How do we make a patch of known intensity?

51

Determining Gamma

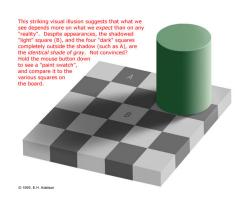
http://www.cs.cornell.edu/Courses/cs4620/2008fa/homeworks/gamma.htm

High Dynamic Range Images

53

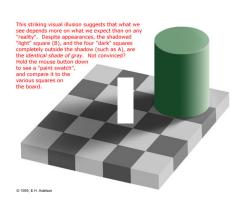
High Dynamic Range Images

- Dynamic range of the human eye >> range of standard monitors
- Eye adjusts as we look around



Paul Debevec and Jitenrda Malik

Perception


• The eye does not see intensity values...

55

Perception

• The eye does not see intensity values...

Perception • The eye does not see intensity values...

57

Perception

58

Tuesday, September 3, 13

Storing Images		
 Digital file formats TIFF, JPEG, PNG, GIF, BMP, PPM, etc Compression (lossless and lossy) Interlaced (e.g. NTSC television) Tend to be complex use libraries Mapping to memory 		
59	59	