CS-184: Computer Graphics

Lecture #8: Projection

Prof. James O'Brien
University of California, Berkeley

Today

* Windowing and Viewing Transformations
* Windows and viewports
+ Orthographic projection

* Perspective projection

Screen Space

* Monitor has some number of pixels

+ eg 1024 x 768
* Some sub-region used for given program

* You call it a window

* Let's call it a viewport instead

[1024,768] [1024,768]
(690,705

60,350]

[0,0] [0,0]

Screen Space

* May not really be a “screen”

* Image file
* Printer
« Other

* Little pixel details
* Sometimes odd

+ Upside down
* Hexagonal

4
From Shirley textbook.

Screen Space

* Viewport is somewhere on screen

* You probably don't care where
+ Window System likely manages this detail
+ Sometimes you care exactly where

* Viewport has a size in pixels

+ Sometimes you care (images, text, etc.)
+ Sometimes you don't (using high-level library)

Screen Space

nx-0.5,ny-0.5

Integer Pixel Addresses

j=5

-0.5,0.5 =3 10 x 10 Image Resolution

Screen Space

1,1

Float Pixel Coordinates

v=0.55=(G +0.5)/ny

0,0

u=0.35=(+0.5)/nx

Canonical View Space

+ Canonical view region

-1

* 2D: [-1,-1]to [+1,41]

+1,+1

_—+—x=0.0, y=0.0

From Shirley textbook.

-1

Canonical View Space

+ Canonical view region

* 2D: [-1,-1]to [+1,41]

ne—1

ny—1

—
I
S O s
- -
ovE O
—

X reflecty

scale

translate

(ny2.:n/2)

-1.1)

(05,

(1,-1)

,-0.5)

L

(n-05

From Shirley textbook.
(Image coordinates are up-side-down.)

, -0.5)

. Remove minus for right-side-up

Canonical View Space

+ Canonical view region

* 2D: [-1,-1]to [+1,41]

* Define arbitrary window and define objects

* Transform window to canonical region

* Do other things (we'll see clipping latter)

* Transform canonical to screen space

* Draw it.

From Shirley textbook.

Canonical View Space

e TR | T
rJ\Tﬂm—H rJIﬁ:*_a C e]

L el

World Coordinates Canonical Screen Space

(Meters) (Pixels)

Note distortion issues...

Projection

* Process of going from 3D to 2D
* Studies throughout history (e.g. painters)

* Different types of projection
Many special cases in books just

* Linear
+ Orthographic one of these two...
* Perspective

* Nonlinear

perspective...

Orthographic is special case of

Perspective Projections

Ray Generation vs. Projection

Viewing in ray tracing
* start with image point
+ compute ray that projects to that point
* do this using geometry

Viewing by projection
+ start with 3D point
+ compute image point that it projects to
+ do this using transforms

Inverse processes

* ray gen. computes the preimage of projection

Linear Projection

* Projection onto a_planar surface

* Projection directions either

+ Converge to a point
+ Are parallel (converge at infinity)

Linear Projection

* A 2D view

m I

Perspective Orthographic

Linear Projection

Orthographic

Perspective

Linear Projection

A

Orthographic

Perspective

Linear Projection

A 2D view

Note how different things can be seen

/ Parallel lines “meet” at infinity

m e

Perspective Orthographic

Orthographic Projection

* No foreshortening
* Parallel lines stay parallel

* Poor depth cues

Orthographic Projection

Canonical View Space

+ Canonical view region
* 3D: [-1,-1,-1]to [+1,4+1,+1]
* Assume looking down -Z axis

* Recall that“Z is in your face”

° /' i > 7
(LL.1] [-1,-1,-1]

Orthographic Projection

+ Convert arbitrary view volume to canonical

. f i >z
[1,1,1]} [-1,-1,-1]

23

Orthographic Projection

View vector

Up vector

far,bottom,left

Center

Right = view X up near,top,right

Origin * Assume up is perpendicular to view.

24

Orthographic Projection

* Step |:translate center to origin

Orthographic Projection

* Step |:translate center to origin

* Step 2:rotate view to -Z and up to +Y

Orthographic Projection

* Step |:translate center to origin
* Step 2:rotate view to -Z and up to +Y
+ Step 3: center view volume

: ﬁ .

27

Orthographic Projection

* Step |:translate center to origin
* Step 2:rotate view to -Z and up to +Y
* Step 3: center view volume

* Step 4: scale to canonical size

s

28

Orthographic Projection

* Step |:translate center to origin
* Step 2:rotate view to -Z and up to +Y
+ Step 3: center view volume

* Step 4: scale to canonical size

I
wn
.q

7—
0 hlv

ﬂ

M
M

I
=

29

Perspective Projection

* Foreshortening: further objects appear smaller
* Some parallel line stay parallel, most don't
* Lines still look like lines

* Z ordering preserved (where we care)

Pp=_

Perspective Projection

plne g
Pinhole a.k.a center of projection
Perspective Projection
B
- N . A’
0
"""""" : CIKF ol e s
AT e /
Ty d ég

Foreshortening: distant objects appear smaller

Perspective Projection

* Vanishing points

* Depend on the scene

* Not intrinsic to camera

i RN

I

“One point perspective”

S ~ \\
™.

PSS

Perspective Projection

* Vanishing points

* Depend on the scene

» Nor intrinsic to camera

“Two point perspective” .

Perspective Projection

* Vanishing points

* Depend on the scene

* Not intrinsic to camera

“Three point perspective” .

Perspective Projection

Perspective Projection

Far
A
Near Top
Y Xq\ Bottom
? b
Up
Center
Distance to image plane

-7 i

Perspective Projection

* Step |:Translate center to origin

Perspective Projection

* Step |:Translate center to origin
* Step 2: Rotate view to -Z, up to +Y

\ Z

Perspective Projection

* Step |:Translate center to origin
* Step 2: Rotate view to -Z, up to +Y

* Step 3: Shear center-line to -Z axis

Perspective Projection

* Step |:Translate center to origin
* Step 2: Rotate view to -Z, up to +Y

* Step 3: Shear center-line to -Z axis 1o 0 0
. . - 01 0 0
Step 4: Perspective 0 o it/ ;

/ i
\

Perspective Projection

* Step 4: Perspective
* Points at z=-i stay at z=-i /
* Points at z=-f stay at z=-f |
* Points at z=0 goto z=+]
* Points at z=-% goto z=-(i+f) \

* x and y values divided by -z/i

+ Straight lines stay straight o 0 0
. . 0 1 0 0
* Depth ordering preserved in [-i,- ;
p gp [-i,f] 0 0 it f ;
* Movement along lines distorted _11

Perspective Projection

\vew plane
g

)

2

o/

(=}
(=}

L~lto o
~ o o

Perspective Projection

"“Eye” plane

Top

Near Far

View vector

A

<

Perspective Projection

\\\\\ Visualizing division of x and y but not z

o\ M

Perspective Projection

\\ A Motion in x,y

VAN

VAN

\ N\

\ —

o\ M

Perspective Projection

\\\\\\ Note that points on near plane fixed

o\ M

Perspective Projection

\

K\

o\ M

Recall that points on far plane will
\stay there...
x>
\ Q
\

Perspective Projection

When we also divide z points must
k\mman on straight lines

%3

|

o\ M

Perspective Projection

i Lines extend outside view volume
e

_______ B §u§

Perspective Projection

Motion in z

Perspective Projection

LA Motion in z

Perspective Projection

Motion in z

4

R

Perspective Projection

Total motion

/

AN

N\

\
|
Y

/
/
-/
=N

Perspective Projection

* Step |:Translate center to orange

* Step 2: Rotate view to -Z, up to +Y
* Step 3: Shear center-line to -Z axis
* Step 4: Perspective

* Step 5: center view volume

* Step 6: scale to canonical size

Perspective Projection

* Step I:Translate center to orange } M
* Step 2: Rotate view to -Z, up to +Y Y
* Step 3: Shear center-line to -Z axis } M

* Step 4: Perspective p
* Step 5: center view volume

} M,

* Step 6: scale to canonical size

M=M, M,-M, °

Perspective Projection

* There are other ways to set up the projection matrix

* View plane at z=0 zero
* Looking down another axis

* etc...

* Functionally equivalent

Vanishing Points

+ Consider a ray:

r(t)=p+td

p/

Vanishing Points

* Ignore Z part of matrix

* X and Y will give location in image plane

* Assume image plane at z=-i

10 0 0
I1 1 0 0]fx
01 0 0
whatever lly]='0 Loty
| (o o -1z
00 -10
Vanishing Points
L7110 07fx
I|=(0 1 0fly|=|vy
I, 0 0 -1}fz -z

Vanishing Points

* Assume
d =—1
[p, +td]

1. /1, -x/z - p.+t
1,/1, —ylz p,+td,

-p,+t

Vanishing Points

y

Lim d.
[— +© - d

* All lines in direction d converge to same point in the image
plane -- the vanishing point

* Every point in plane is a v.p. for some set of lines

* Lines parallel to image plane (d, =)0vanish at infinity

What's a horizon?

Perspective Tricks

Right Looks Wrong (Sometimes)

From Corfection of Geometric Perceptual Distortions in Pictures, Zorin and Barr SIGGRAPH 1995

Right Looks Wrong (Sometimes)

From WIi

Marketshare Chart: WTF?

ED Magazine

Strangeness

The Ambassadors
by Hans Holbein the Younger

M"’ -

e >

Strangeness

Ray Picking

* Pick object by picking point on screen

o,

+ Compute ray from pixel coordinates.

Ray Picking

* Transform from World to Screen is:

7] a
Ll _ul?
| . IZ WZ
nverse. I, W,
-W‘C- IX]
w, -M" I,
* What Z value? | W- 1,
Ray Picking
. Recall _tha_t Depends on screen details, YMMV

General idea should translate...
* Points at z=-i stay at z=-i
* Points at z=-f stay at z=-f
as — [S_x, Sy, _i]
r(t)=p+td

r(t) =a,+i(by—a,) | 27w/l

1
1
1
1
1
I
I
|
1
1
I
|
I 70

Depth Distortion

* Recall depth distortion from perspective

* Interpolating in screen space different than in world

+ Ok, for shading (mostly)
+ Bad for texture

World

Half way in screen space

Half way in world

\ Spare
\\ \\
Screen
e
i

71

Depth Distortion

S1= P/

A

N

NS4 = Pa/ly

/S5 = Py/hs3

/

Py

Py

b3

)

Depth Distortion

Sy =Pi/hy

\ Pl P4
\\54 = Py/hy
So = P3/h
// 3=13/h3 /
/) | P
Sy = Py/ho X= ZSibz’ Q-3 Pu;
We know the s;, P, ,and b , but not the « .
Depth Distortion
S1= P/
\ Py Py
\\54 = Py/hy
§ S3 = P3/hg /
/ \ /
/) | P

So = Py/hy

X =) 8b
i

X=Q/h= (Z Piaz‘) / (Z hj“j)

Q= Z Pa;

Depth Distortion

S1=P1/h
\ P Py
\\54 = Py/hy
// 93 = P3/h3 /
/ P / P
Sy = Py/ho X= ZSibz’ Q-3 Pu;
Z S;b; = (Z Piai> / (Z hjaj) i
Depth Distortion
S1="P1/h
\ P Py
\\54 = Py/hy
/ﬁi Py/hs /
/ P / P

So = Py/hy

o~

X =) 8b
7

Z Pb;/h; = (Z Piai> / (Z hjaj>

/
Q= Z P;a;

i

Depth Distortion

S1=nP/M
Py Py
NS4 = Py/hy
74},
/\93 = F3/h3 /
= B /]
Sy = Py/h X =) Sibi
2= P/ %4 i Q:ZPM
T

Independent of given vertex
locations.

Zpibi/hi = (Z Piaz‘) / (

>

J

hj a

bi/h; = a;/ (E hjaj) Vi
J

|

42
77

Depth Distortion

S1="P/h
Py Py
Sy = Py/hy
74’,
5 3= P3/hg /
- Py // P
Sy = Py/h X=) 5ib -
)= Py/hy %‘zz Q:Lpiai
1

Linear equations in the q; .

Depth Distortion

S1="Py/h
Py Py
Sy=Py/hy
o
3= 13/h3 /
- %) /]
= X¥= S;b;
Sy =Po/hy %‘ i Q:ZPM
1
Linear equations in the q; . S hjaj | bifh —a;=0 Vi
J
Not invertible so add some ST
extra constraints. - ' - !

Depth Distortion

S1="P/h
P Py
Sy = Py/hy
74’,
5 3= P3/hg /
= Py / By
- X =Y "8, -
SQ—PQ/hQ %, 7% Q:Lpiai
i
For a line: ay = hob;/(byho + hyby)

For a triangle: a1 = hohgby/(hahsby + hihgby + hihabs)

Obvious Permutations for other coefficients.

