
EE290 Mathematics of Data Science Lecture 20 & 21 - 11/14/2019

Lecture 20 and 21: Wavelet Shrinkage
Lecturer: Jiantao Jiao Scribe: Yanjun Han and Jiantao Jiao

This lecture is based partially on EE378A taught at Stanford by Tsachy Weissman and Jiantao Jiao.

1 Recap

In the last lecture, we considered the nonparametric function estimation problem in the regression setting. In
particular, we showed that the kernel-based estimator with a suitable-chosen adaptive bandwidth essentially
achieves the minimax risk over Hölder and Sobolev balls. Specifically, the estimator is constructed as follows:

1. Fix some kernel (or weight function) with suitable regularity conditions (e.g., keep polynomials up to

a prescribed degree), and use this kernel to construct a linear estimator f̂h(x) for any point x ∈ [0, 1]
and bandwidth h > 0;

2. For any point x ∈ [0, 1], use some rule (e.g., Lepski’s trick) to choose an adaptive bandwidth ĥ(x);

3. Finally, for any point x ∈ [0, 1], use f̂ĥ(x)(x) as the estimator for f(x).

We also recall the Lepski’s trick: for any x ∈ [0, 1], we pick up a set consisting of “admissible” bandwidths:

A = {h ∈ [0, 1] : |f̂h(x)− f̂h′(x)| ≤ 4sh′(x), ∀h′ ∈ (0, h)} (1)

and then choose ĥ(x) = maxA. We validate this choice via two steps: we show that the optimal bandwidth

h∗ which balances the bias and variance locally belongs to this set, and then we show that ĥ also works by
relating ĥ to the unknown h∗. This idea can also be generalized to high-dimensional cases with caution, and
you may look at Homework 6 for details.

The main insights of the previous approach are two-fold:

1. The bias-variance tradeoff should be understood and analyzed carefully: this step determines the choice
of the optimal bandwidth;

2. “A little bit” non-linearity needs to be added to the estimator: we have shown in the previous lecture
that all linear approaches may fail to give the order-optimal risk in certain models, while an “almost”
linear estimator with “a little bit” non-linearity can succeed. In the previous example, we almost
use a linear kernel-based estimator, and the only additional non-linearity is to choose the bandwidth
differently at different points.

In this lecture, we will attack the same problem using a different approach called wavelet shrinkage, where
we can see the same phenomena from a different viewpoint.

2 Gaussian White Noise Model and Change of Basis

In the last lecture we have looked at the regression problem in Gaussian noise, and also remarked that the
same idea can also be used in the density estimation setting, where the kernel-based estimator is called the
KDE (Kernel Density Estimator). In this lecture we will look at the Gaussian White Noise Model, and
remark that this is essentially the same as the previous two models.
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2.1 Equivalences between Models

We call two statistical models are equivalent if they can almost simulate each other. An equivalent formulation
is that, for any bounded loss function and any objective to be estimated, if there is an estimator f̂1(x) for

one model, we can construct another estimator f̂2(y) for the other model whose estimation performance (i.e.,

the risk) is almost no worse than that of f̂1(x) under any true parameter θ ∈ Θ, and vice versa. Intuitively,
if two models are equivalent, for estimation purposes it suffices to look at any one of them. For a rigorous
treatment, we refer interested readers to the Le Cam distance1.

We will consider four different models in the context of nonparametric estimation:

1. Regression Model: we observe n samples {yi}ni=1 with yi = f(xi) + σξi for 1 ≤ i ≤ n, where xi = i
n

and ξi
i.i.d∼ N (0, 1);

2. Gaussian White Noise Model: we observe a process (Yt)t∈[0,1] with

Yt =

∫ t

0

f(s)ds+
σ√
n
Bt, t ∈ [0, 1] (2)

where (Bt)t∈[0,1] is the standard Brownion Motion on [0, 1]. This model can also be written in the
stochastic differential equation (SDE) form as dYt = f(t)dt+ σ√

n
dBt. The reason for the 1/

√
n scaling

is that for interval of length 1/n, the signal in the white noise model is about f(t)
n , while the noise in

the model is σ√
n
N (0, 1/n), which after normalization reduces to signal f(t) noise N (0, σ2).

3. Density Estimation Model: we observe n i.i.d samples y1, · · · , yn
i.i.d∼ g(·), where the density g is

supported on [0, 1];

4. Poisson Process Model: we observe a Poisson process (Yt)t∈[0,1] with a time-varying intensity ng(·),
where the density function g is supported on [0, 1].

In each model, there is some unknown function/density treated as the unknown parameter, and we observe
discrete samples or a stochastic process. Suppose that the parameter space is f ∈ F , where F is some function
class possessing certain order of smoothness. The main result is that these four models are equivalent:

Theorem 1. 2 3 Under certain technical conditions, these four models are asymtotically equivalent as n→
∞, with g = f2, σ = 1

2 when talking about the last two models.

2.2 Change of Basis

Due to the model equivalence, in this lecture we consider the Gaussian white noise model

dYt = f(t)dt+
σ√
n
dBt, t ∈ [0, 1] (3)

and our target is to find an estimator f̂ which comes close to minimizing the worst-case squared-error risk

sup
f∈F

Ef‖f̂ − f‖22. (4)

Now we take a look at how the model and the loss function behave after we transform the problem into a
different domain.

1see, e.g., F. Liese and K. J. Miescke, Statistical Decision Theory: Estimation, Testing and Selection. Springer, 2008.
2L. D. Brown, and M. G. Low. Asymptotic equivalence of nonparametric regression and white noise. The Annals of

Statistics, 24(6), pp. 2384–2398, 1996.
3L. D. Brown, A. V. Carter, M. G. Low, and C. H. Zhang, Equivalence theory for density estimation, Poisson processes and

Gaussian white noise with drift. The Annals of Statistics, 32(5), pp. 2074–2097, 2004.
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Let (φj)
∞
j=1 be an orthonormal basis of L2[0, 1], then we can represent the function f via its coefficients

θ = (θj)
∞
j=1, where

θj ,
∫ 1

0

φj(t)f(t)dt. (5)

Note that the restriction f ∈ F will be transformed into the condition θ ∈ Θ for some proper parameter set
Θ. Also, for any estimator f̂ , we can also represent it by

θ̂j ,
∫ 1

0

φj(t)f̂(t)dt. (6)

As for the observation, we may define

yj ,
∫ 1

0

φj(t)dYt (7)

=

∫ 1

0

φj(t)

(
f(t)dt+

σ√
n
dBt

)
(8)

=

∫ 1

0

φj(t)f(t)dt+
σ√
n

∫ 1

0

φj(t)dBt (9)

≡ θj + ε · ξj (10)

where ε , σ√
n

denotes the noise level, and

ξj ,
∫ 1

0

φj(t)dBt. (11)

Exercise 2. Use the orthonormality of (φj)
∞
j=1 to conclude that ξj

i.i.d∼ N (0, 1).

By the previous exercise, we know that the Gaussian white noise model reduces to the following Gaussian
sequence model under the basis (φj)

∞
j=1:

yj = θj + εξj , θ = (θ1, θ2, · · · ) ∈ Θ, ε =
σ√
n
, ξj

i.i.d∼ N (0, 1). (12)

Also, ‖θ̂ − θ‖2 = ‖f̂ − f‖2 by Parseval’s identity, our target becomes to find some θ̂ = (θ̂1, θ̂2, · · · ) which
comes close to minimize

sup
θ∈Θ

Eθ‖θ̂ − θ‖22 = sup
θ∈Θ

∞∑
j=1

Eθ(θ̂j − θj)2. (13)

As a result, under the basis change, we operate in a Gaussian sequence model and would like to estimate
the mean vector simultaneously.

3 Besov Ball and Wavelet Basis

Before introducing how to add the non-linearity in the transformed domain, first we specify the choice of
the function class F and the orthonormal basis (φj)

∞
j=1. Specifically, we will choose F to be the Besov ball

Bsp,q(L), and (φj)
∞
j=1 to be the wavelet basis. To avoid technicality, we will treat them informally and only

talk about the insights behind these concepts, and refer interested readers to the following reference:

• W. Härdle, G. Kerkyacharian, D. Picard, and A. Tsybakov, Wavelets, approximation, and statistical
applications. Springer Science & Business Media, Vol. 129, 2012.
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3.1 Introduction to Besov Ball

Like the Hölder and Sobolev balls, the Besov ball is another ball which characterizes the smoothness of a
function in a more delicate and complicated way. Specifically, for any s > 0, p, q ∈ [1,∞], we may define a
norm ‖ · ‖Bs

p,q
which is somehow (informally) close to

‖f‖Bs
p,q
≈ ‖f (s)‖p (14)

where f (s) is the order-s derivative of f . Note that s may not be an integer, but in the above definition
we have a proper definition of a fractional derivative, and the parameter q also affects the definition of the
derivative slightly. Intuitively, ‖ · ‖Bs

p,q
is another norm which characterizes the order-s smoothness.

Naturally, the Besov ball Bsp,q(L) is defined by

Bsp,q(L) , {f : ‖f‖Bs
p,q
≤ L}. (15)

3.2 Introduction to Wavelet Basis

The wavelet basis is an orthonormal basis which exploits the idea of multi-resolution analysis: any function
is viewed from multiple resolutions. Specifically:

1. There is a father wavelet φ(x) and a mother wavelet ψ(x) on [0, 1];

2. At level j and location k, we define

φjk(x) , 2
j
2φ(2jx− k), (16)

ψjk(x) , 2
j
2ψ(2jx− k), (17)

with j ∈ N, 0 ≤ k ≤ 2j − 1.

Note that supp(φjk) = supp(ψjk) = [ k2j ,
k+1
2j ], the level j characterizes the resolution 2−j , and the parameter

k characterizes the spatial location to look at.

Example 3. The Haar wavelet is defined by φ(x) = 1(x ∈ [0, 1]), ψ(x) = 1(x ∈ [0, 1
2 ])− 1(x ∈ [ 1

2 , 1]). This
is the first wavelet basis proposed in 1909.

Not all functions can be the father and wavelet wavelets. A crucial property (besides the orthonormality)
for wavelets is that, defining

Vj , span{φjk(x), 0 ≤ k ≤ 2j − 1} (18)

Wj , span{ψjk(x), 0 ≤ k ≤ 2j − 1} (19)

then for any j0 ∈ N we have

L2[0, 1] = Vj0 ⊕Wj0 ⊕Wj0+1 ⊕ · · ·. (20)

As a result, any f ∈ L2[0, 1] can be written as

f(x) =

2j0−1∑
k=0

αj0kφj0k(x)︸ ︷︷ ︸
Gross Information

+

∞∑
j=j0

2j−1∑
k=0

βjkψjk(x)︸ ︷︷ ︸
Detail Information at level j

(21)

for some coefficients (αj0k), (βjk). The first term corresponds to the “gross information”, i.e., some informa-
tion in the average sense, e.g., the average magnitude in a small interval. The second term corresponds to
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the “detail information”, i.e., some information related to the local change, e.g., how function oscillates in a
small interval. We can view the detail in different scale/resolution, which is characterized by different levels
j = j0, j0 + 1, · · · .

The reason why we introduce the wavelet basis is that it is the right basis for the Besov ball, as is shown
in the following theorem.

Theorem 4. Under certain regularity conditions on the wavelet basis, the Besov norm ‖ · ‖Bs
p,q

for function
is equivalent to ‖ · ‖bsp,q for its wavelet coefficients, where

‖f‖bsp,q ,

2j0−1∑
k=0

|αj0k|p
 1

p

+

 ∞∑
j=j0

2j(s+
1
2−

1
p )

2j−1∑
k=0

|βjk|p
 1

p


q

1
q

. (22)

We can also write it in a more compact form as ‖f‖bsp,q = ‖αj0‖p + ‖2j(s+
1
2−

1
p )‖βj‖p‖q, where the `p norm

is taken with respect to k, and the `q norm is taken with respect to j.

Recall that we call two norms (X, ‖ · ‖1), (X, ‖ · ‖2) are equivalent if there exists universal constants
c1, c2 > 0 such that c1‖f‖2 ≤ ‖f‖1 ≤ c2‖f‖2 for any f ∈ X. Then the following corollary is immediate:

Corollary 5. Defining

Θs
p,q , {θ = ((αj0k), (βjk)) : ‖θ‖bsp,q ≤ 1}, (23)

there exists some constants c1, c2 > 0 such that

c1Θs
p,q ⊂ Bsp,q(L) ⊂ c2Θs

p,q. (24)

We remark that although the form of Θs
p,q is still quite complicated, we will make use of some crucial

properties of Θs
p,q to propose sound estimators and validate the fact that the wavelet basis is the right basis

for the Besov space.

4 Thresholding and VisuShrink Estimator

In this section we present the thresholding idea to add the correct non-linearity, and thereby motivates the
VisuShrink estimator. The reference for this section and the following ones is:

• I. Johnstone, Gaussian Estimation: Sequence and Wavelet Models. Online manuscript (http://
statweb.stanford.edu/~imj/GE09-08-15.pdf), September 2015.

4.1 Ideal Truncated Estimator

Before we look into the Gaussian sequence estimation problem, first we gain some insights from the Gaussian
mean estimation in the scalar case. Consider estimating the mean θ ∈ R in the following scalar model:

y = θ + εξ, ξ ∼ N (0, 1) (25)

where ε > 0 is known, and the only assumption we impose on θ is that |θ| ≤ τ for some known τ . The target

is to find some estimator θ̂ such that the mean squared error Eθ(θ̂− θ)2 is small. The following insights are
straightforward:

1. When τ is large, there is essentially no restriction on the parameter θ, and it is expected that the
observation itself θ̂ = y should be a near-optimal estimator. In fact, if τ = ∞, the natural estimator
θ̂ = y is the Uniformly Minimum Variance Unbiased Estimator (UMVUE) and also minimax.
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2. When τ is small (e.g., much smaller than ε), the signal θ is almost completely obscured by the noise.

In this case, θ̂ = 0 is expected to be a good estimate, since E(θ̂ − θ)2 = θ2 ≤ τ2 is really small.

Based on these insights, we expect that either θ̂ = y or θ̂ = 0 can do a good job. As a result, we introduce
the following concept of the ideal truncated estimator : suppose that there is a genie who knows the true
parameter θ but is restricted to use θ̂ = y or θ̂ = 0, it is easy to see that the optimal estimator is

θ̂ITE = y1(|θ| ≥ ε) (26)

whose mean squared error is given by

Eθ(θ̂ITE − θ)2 = min{θ2, ε2}. (27)

The following theorem shows that the ideal truncated estimator essentially attains the minimax risk for
any τ ≥ 0. Of course, the ideal truncated estimator cannot be computed since it knows the signal θ, but it
is definitely non-trivial to show that the minimax risk in fact cannot do more than a constant better than
the ideal truncated estimator: indeed, the ideal truncated estimator is only allowed to use either y or 0 to
estimate, but our estimator can produce anything!

Theorem 6. 4 For any τ ≥ 0, the ideal truncated estimator attains the minimax risk over |θ| ≤ τ within a
multiplicative factor of 2.22:

min{τ2, ε2} = sup
|θ|≤τ

Eθ(θ̂ITE − θ)2 ≤ 2.22 · inf
θ̂

sup
|θ|≤τ

Eθ(θ̂ − θ)2. (28)

It’s straightforward to generalize this result to the sequence case. Consider the Gaussian sequence model
(12) with θ ∈ R(τ), where τ = (τ1, τ2, · · · ) is a non-negative sequence and R(τ) is a orthosymmetric rectangle
with one vertex τ :

R(τ) , {θ = (θ1, θ2, · · · ) : |θi| ≤ τi, ∀i = 1, 2, · · · }. (29)

The following corollary is immediate:

Corollary 7. For any non-negative vector τ = (τ1, τ2, · · · ), for Gaussian sequence model (12) we have

∞∑
i=1

min{τ2
i , ε

2} = sup
θ∈R(τ)

Eθ‖θ̂ITE − θ‖22 ≤ 2.22 · inf
θ̂

sup
θ∈R(τ)

Eθ‖θ̂ − θ‖22. (30)

4.2 Soft- and Hard-Thresholding Estimator

We showed that the minimax risk for constrained set {θ : ‖θ‖ ≤ τ} is lower bounded by
∑
i min{θ2

i , ε
2}, but

is it achievable in any sense? Specifically, we want to find an estimator θ̂ = (θ̂1, · · · , θ̂m) such that in the
Gaussian sequence model (12) of length m, the inequality

Eθ‖θ̂ − θ‖22 ≤ something×

(
ε2 +

m∑
i=1

min{θ2
i , ε

2}

)
(31)

holds for any θ ∈ Rm. Note that for technical reasons we need to have an additional ε2 term in the RHS:
indeed, our estimator does not know θ, and it in general cannot tell the difference between the case of θ = 0
and θ ≈ ε.

Now we take a careful look at our requirement. As a sanity check, the RHS is really small when θ = 0,
which forces the LHS to be small as well. In other words, when the true parameter θ is the zero vector, our

4D. L. Donoho, R. C. Liu, and B. MacGibbon. Minimax risk over hyperrectangles, and implications. The Annals of
Statistics, pp. 1416–1437, 1990.
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estimator θ̂ must be close to the zero vector as well. Prove the following result:

Exercise 8. For X1, · · · , Xm
i.i.d∼ N (0, ε2), we have P(max1≤i≤m |Xi| ≥ ε

√
2 logm)→ 0 as m→∞.

Using this exercise, a natural constraint on the estimator θ̂ can be that, θ̂ = 0 whenever max1≤i≤m |yi| ≤
ε
√

2 logm. This observation motivates us to do some type of thresholding: specifically, we can define the
soft-thresholding and hard-thresholding functions as follows:

ηst (y) = sign(y) · (|y| − t)+ (32)

ηht (y) = y · 1(|y| ≥ t). (33)

Note that these thresholding functions are close to truncation: when |y| is small the functions return zero,
and when |y| is large the functions return something close to y.

By acting coordinatewisely, we may also define the soft-thresholding estimator θ̂st (y) = (ηst (y1), · · · , ηst (ym))

and the hard-thresholding estimator θ̂ht (y) = (ηht (y1), · · · , ηht (ym)), and the previous analysis motivates us
to choose the threshold t to be roughly ε

√
2 logm. The following theorem shows that the oracle inequality

(31) holds for thresholding estimators:

Theorem 9. 5 For t = ε
√

2 logm, the soft-thresholding estimator θ̂st (y) satisfies the following oracle inequal-
ity in the Gaussian sequence model (12):

Eθ‖θ̂st (y)− θ‖22 ≤ (2 logm+ 1) ·

(
ε2 +

m∑
i=1

min{θ2
i , ε

2}

)
. (34)

The same result holds for the hard-thresholding estimator θ̂ht (y) with t = ε
√

2 logm+ log logm.

4.3 Projection Estimator and Bias-Variance Tradeoff

Now we use the previous high-dimensional result to derive results for the infinite-dimensional case. We first
consider the projection estimator, but the bias-variance decomposition shown below can be generalized to
arbitrary estimators that cutoff at a certain threshold.

The projection estimator is defined as follows for the Gaussian sequence model (12)

θ̂j =

{
yj , if 1 ≤ j ≤ m,
0, if j > m.

(35)

It’s easy to see that

Eθ(θ̂j − θj)2 =

{
ε2, if 1 ≤ j ≤ m,
θ2
j , if j > m.

(36)

As a result, we have

Eθ‖θ̂ − θ‖22 = mε2 +
∑
j>m

θ2
j . (37)

Now we have the bias-variance tradeoff in the Gaussian sequence model:

1. Bias: the second term
∑
j>m θ

2
j , which originates from throwing away the data in the tail. Note that

when m increases, the bias will decrease;

5D. L. Donoho, and I. M. Johnstone. Ideal spatial adaptation by wavelet shrinkage. biometrika, pp. 425–455, 1994.
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2. Variance: the first term mε2, which originates from the noise in the observation sequence (yj)
∞
j=1. Note

that when m increases, the variance will increase.

We can think of the threshold m as the reciprocal of the bandwidth h in the kernel-based method: as we
know from Fourier analysis, the bandwidth in the time domain and that in the frequency domain satisfies
the uncertainty principle. Also, in this case, the relationship of the bias/variance in m corresponds to that
of the bias/variance in h in the time domain. As a result, in the transformed domain, the bias-variance
tradeoff depends on the cutting position of the observed sequence.

4.4 VisuShrink Estimator

Now we are about to describe the VisuShrink estimator for the Gaussian sequence model (12) with Θ = Θs
p,q.

The parameters in this model are θ = ((αj0k), (βjk) : j ≥ j0, 0 ≤ k ≤ 2j − 1), and we rewrite this vector as
θ = (θ1, θ2, · · · ). The VisuShrink estimator does the following:

θ̂VISU
i =

{
ηst (yi) if i ≤ m
0 if i > m

(38)

where m is a parameter to be chosen later, and the threshold t is chosen to be t = ε
√

2 logm. Note that
compared with the projection estimator, the only difference is that when i ≤ m we replaced the raw data yi
by its soft-thresholding ηst (yi). Similarly, we can do hard-thresholding as well with t = ε

√
2 logm+ log logm

according to Theorem 9.
Now we’re about to analyze the performance of the VisuShrink estimator. According to Theorem 9, we

know that

Eθ‖θ̂VISU − θ‖22 ≤ (2 logm+ 1)

(
ε2 +

m∑
i=1

min{θ2
i , ε

2}

)
+
∑
i>m

|θi|2 (39)

≤ (2 logm+ 1)

(
ε2 +

∞∑
i=1

min{θ2
i , ε

2}

)
+
∑
i>m

|θi|2. (40)

By the definition of Θs
p,q, by choosing m = ε−A for some large enough constant A > 0, we may have the tail

bound: supθ∈Θs
p,q

∑
i>m |θi|2 � ε2. As a result, for this choice of m, we have

Eθ‖θ̂VISU − θ‖22 . log(
1

ε
) ·
∞∑
i=1

min{θ2
i , ε

2}+ ε2 log(
1

ε
). (41)

Now we come to the crucial property of the parameter set Θs
p,q: it is solid and orthosymmetric. Equivalently,

this means that for any θ ∈ Θs
p,q, the orthosymmetric hyperrectangle R(|θ|) with a vertex θ is contained

again in the parameter set Θs
p,q. As a result, by Corollary 7 we know that

Eθ‖θ̂VISU − θ‖22 . log(
1

ε
) ·
∞∑
i=1

min{θ2
i , ε

2}+ ε2 log(
1

ε
) (42)

≤ 2.22 log(
1

ε
) · inf

θ̂
sup

θ′∈R(|θ|)
Eθ′‖θ̂ − θ′‖22 + ε2 log(

1

ε
) (43)

≤ 2.22 log(
1

ε
) · inf

θ̂
sup

θ′∈Θs
p,q

Eθ′‖θ̂ − θ′‖22 + ε2 log(
1

ε
) (44)

where in the last inequality we have used the property

R(|θ|) ⊂ Θs
p,q, (45)
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where R(·) is defined in (29).
As a result, the VisuShrink estimator attains the minimax risk within a logarithmic factor.
We remark that we do not use any specific properties of Θs

p,q (which is of a complicated form) other than
that it is solid and orthosymmetric. Also, we prove that the VisuShrink estimator is nearly minimax without
even figuring out what the minimax risk is. These observations indicate that the geometry of the parameter
set is really important, and the reason why we choose the wavelet basis for the Besov ball is that the Besov
ball becomes solid and orthosymmetric in the wavelet domain! In other words, for any orthonormal basis
(φi)i∈I , the VisuShrink idea still works as long as the associated parameter set Θ is solid and orthosymmetric
in the transformed space (45). In fact, this property requires that the basis be an unconditional basis:

Definition 10 (Unconditional Basis). An orthonormal basis (φi)i∈I is an unconditional basis of the real
normed vector space (X, ‖ · ‖) if and only if there exists a universal constant C > 0 such that∥∥∥∥∥∑

i∈J
εiφi

∥∥∥∥∥ ≤ C
∥∥∥∥∥∑
i∈J

φi

∥∥∥∥∥ (46)

holds for any finite J ⊂ I.

The main messages are that:

1. Unconditional basis is the optimal basis in nonparametric function estimation;

2. Wavelet basis is an unconditional basis for the Besov norm (L2[0, 1], ‖ · ‖Bs
p,q

) (and Fourier basis is not
in general).

Finally, we note the relationship between Θs
p,q and Bsp,q(L), and summarize the VisuShrink estimator as

follows:

1. Fix some initial level j0 (which is of the constant order) and termination level jε � log( 1
ε );

2. Transform the observation process (Yt)t∈[0,1] to the wavelet domain with initial level j0, and obtain
the corresponding α-coefficients and β-coefficients empirically;

3. Use the following procedure to obtain new coefficient estimates:

(a) For α-coefficients (which are only at level j0), keep them all;

(b) For β-coefficients, for j > jε discard them all, and for j0 ≤ j ≤ jε apply the thresholding estimator
(either soft or hard one) with suitable threshold given in Theorem 9 to the observation vector.

4. Transform the estimated wavelet coefficients back to the function space, and obtain f̂VISU.

The property of the VisuShrink estimator f̂VISU is summarized in the following theorem:

Theorem 11. 6 For any s > 0, p, q ∈ [1,∞], the VisuShrink estimator f̂VISU attains the minimax risk over
Besov balls Bsp,q(L) within logarithmic factors:

sup
f∈Bs

p,q(L)

Ef‖f̂VISU − f‖22 . log(
1

ε
) · inf

f̂
sup

f∈Bs
p,q(L)

Ef‖f̂ − f‖22. (47)

6D. L. Donoho, and I. M. Johnstone. Ideal spatial adaptation by wavelet shrinkage. biometrika, pp. 425–455, 1994.
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4.5 Discussions

We make some discussions on the previous VisuShrink estimator.
First of all, the VisuShrink estimator is almost a linear estimator (i.e., close to the projection estimator),

while there is also a little bit non-linearity here, i.e., the thresholding idea. We can think of the thresholding
approach as a selector which selects the coefficients to keep in a data-dependent manner: when the empirical
coefficient is large, we expect it to be useful signal and keep it; when the empirical coefficient is small, we
expect it to be the noise and discard it. We can compare this idea with Lepski’s trick to deal with the sparse
regime we defined in the last lecture: in the sparse regime, the signal is supported on a small interval and all
others are noise. In this case, Lepski’s trick selects a large bandwidth in the noise regime to essentially neglect
all noise, and the VisuShrink estimator simply selects the peak and neglects all others of the transformed
signal in the wavelet domain.

Secondly, the VisuShrink estimator employs the shrinkage idea, which means that reduce the variance
significantly with a little bit increase on the bias in statistics. Actually, this is where the term “shrink” in
the name “VisuShrink” comes from. Specifically, compared with the projection estimator which keeps the
raw observation, the thresholding idea incurs a larger bias (note that the previous one is indeed unbiased !),
while reduces the variance significantly (e.g., from ε2 to min{ε2, θ2

i } per symbol).
Finally, we remark that by construction, the VisuShrink estimator does not require the knowledge of

parameters s, p, q, L and is thus an adaptive estimator. Similar to the Lepski’s estimator, the only knowledge
the VisuShrink requires is an upper bound of the smoothness parameter s, for the termination level jε depends
on this upper bound.

5 Thresholding and SureShrink Estimator

In the previous section we have validated the thresholding idea by proving an oracle inequality (Theorem
9), and use the geometry of the parameter set Θs

p,q to relate the risk of the ideal truncated estimator to the
minimax risk. In this section we will validate the thresholding idea from a different viewpoint, and introduce
the resulting SureShrink estimator.

5.1 Gaussian Mean Estimation over `p Balls with `q Error

Consider the Gaussian sequence estimation problem (12) with a simpler parameter set: Θ = {θ : ‖θ‖p ≤ R}
is the `p ball. Also, instead of the mean squared error loss, we consider the `q loss as the general loss
functions where p ∈ (0,∞], q ∈ [1,∞). The question is that: for this simple example, which estimator is
nearly minimax under different parameter configurations (p, q,R, ε)?

We first begin with some insights. When R is large (or equivalently ε is small), the constraint on θ is
quite loose, and thus we should use an estimator close to the natural one (i.e., the empirical observation).
When R is small (ε is large), the vector is close to zero and we may directly apply a zero estimator. When
p ∈ (0,∞] is small, we know that the parameter θ is somehow quite sparse, and thus the resulting estimator
should have many zero entries. In contrast, when p is large, the parameter θ can be quite dense, and the
natural estimator is expected to work here.

As a result, if we treat the natural estimator θ̂ = y as the thresholding estimator θ̂ = ηst (y) with threshold

t = 0, and the zero estimator θ̂ = 0 as the thresholding estimator θ̂ = ηst (y) with threshold t =∞, it seems
that the thresholding estimator with some suitable threshold should work. This intuition turns out to be
correct, which is shown in the following theorem:

Theorem 12. 7 For most parameter configurations (p, q,R, ε), there exists a universal constant Cp,q > 0

7D. L. Donoho, and I. M. Johnstone. Minimax risk over `p-balls for `q-error. Probability Theory and Related Fields, 99(2),
pp. 277–303, 1994.
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such that for the Gaussian sequence model (12) with Θ = {θ : ‖θ‖p ≤ R},

inf
t

sup
θ∈Θ

Eθ‖ηst (y)− θ‖qq ≤ Cp,q · inf
θ̂

sup
θ∈Θ

Eθ‖θ̂ − θ‖qq. (48)

The same result also holds for the hard-thresholding estimator ηht (y).

The implication of Theorem 12 to our case is that: although the parameter space Θs
p,q is of a very

complicated form, it only involves the the combination of `p and `q norms! Hence, we expect that the
thresholding idea also works in our case over Θs

p,q. Specifically, we consider the following estimator:

1. Transform the observation to wavelet coefficients starting from initial level j0 (of a constant order);

2. Keep all father wavelet coefficients, and for each level j, apply the (soft- or hard-)thresholding estimator
to the mother wavelet coefficients with threshold tj ;

3. Transform back the coefficients into functions to yield f̂ .

We write the resulting estimator as f̂t, where t = (tj0 , tj0+1, · · · ) is the threshold sequence. Based on the
previous insights and with the help of Theorem 12, the following result holds:

Theorem 13. 8 For the nonparametric function estimation over Besov balls, the thresholding estimator with
appropriate thresholds attains the minimax risk within a multiplicative factor:

inf
t=(tj0 ,tj0+1,··· )

sup
f∈Bs

p,q(L)

Ef‖f̂t − f‖22 . inf
f̂

sup
f∈Bs

p,q(L)

Ef‖f̂ − f‖22. (49)

5.2 SURE (Stein’s Unbiased Risk Estimate)

The previous Theorem ensures that some thresholding estimator works, but does not specify which threshold
we should choose. A näıve thought is that, if we could compare the performances of f̂t with different t’s,
then we should choose the one with the minimum error:

t∗ = arg min
t

Ef‖f̂t − f‖22. (50)

However, this approach is infeasible since we do not know the true function f . Despite this difficulty, the
good news is that we can still apply this idea and use an unbiased estimator of Ef‖f̂t−f‖22 without knowing
f .

Now we start to illustrate the idea. Consider the Gaussian sequence model in (12) with length m, and

fix any estimator θ̂(y) of θ. Note that g(y) = θ̂(y)− y only depends on y but not on θ, and

Eθ‖θ̂ − θ‖22 = Eθ‖g(y) + y − θ‖22 (51)

= Eθ‖g(y)‖22 + Eθ‖y − θ‖22 + 2Eθ[(y − θ)T g(y)]. (52)

Exercise 14. Prove Stein’s identity: for X ∼ N (µ, σ2) and any (weakly) differentiable function f , we have
E[(X − µ)f(X)] = σ2E[f ′(X)].

By Stein’s identity, we further have

Eθ‖θ̂ − θ‖22 = Eθ‖g(y)‖22 + Eθ‖y − θ‖22 + 2Eθ[(y − θ)T g(y)] (53)

= Eθ‖g(y)‖22 +mε2 + 2ε2Eθ[∇ · g(y)] (54)

= Eθ
[
(m+ 2∇ · g(y))ε2 + ‖g(y)‖22

]
. (55)

As a result, we have the following definition of the Stein’s Unbiased Risk Estimator:

8D. L. Donoho, and I. M. Johnstone. Minimax estimation via wavelet shrinkage. The annals of Statistics, 26(3), pp.
879–921, 1998.
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Definition 15 (SURE). For the Gaussian sequence model in (12) with length m, then for any estimator

θ̂(y) with a weakly differentiable g(y) , θ̂(y)− y, the Stein’s Unbiased Risk Estimator (SURE) is defined by

rSURE(y) , (m+ 2∇ · g(y))ε2 + ‖g(y)‖22. (56)

The SURE satisfies Eθ[rSURE(y)] = Eθ‖θ̂ − θ‖22 for any θ ∈ Θ.

5.3 The SureShrink Estimator

With the SURE in hand, we may introduce the SureShrink estimator, which chooses the threshold sequence
t = (tj)j≥j0 based on the risk estimate. Specifically, on each level j ≥ j0, we randomly divide the index set
{0, 1, · · · , 2j − 1} into two halves I, I ′, and for the soft-thresholding we define

tI , arg min
t≥0

∑
k∈I′

(1− 2 · 1(|yj,k| ≤ t))ε2 + (min{t, |yj,k|})2 (57)

tI′ , arg min
t≥0

∑
k∈I

(1− 2 · 1(|yj,k| ≤ t))ε2 + (min{t, |yj,k|})2 (58)

where (yj,k)0≤k≤2j−1 are the empirical wavelet coefficients on level j. Then we apply the soft-thresholding
estimator with threshold tI to all yj,k for k ∈ I, and apply it with threshold tI′ to all yj,k for k ∈ I ′. The same
idea can also be applied to the hard-thresholding estimator. We remark that the random sample splitting
approach is purely for technical purposes (to gain independence), which is not necessary in practice. The

SureShrink estimator is defined to be f̂t̂ with the thresholds given by the previous equation.
The theoretical performance of the SureShrink estimator is summarized in the following theorem.

Theorem 16. 9 For s > 1
p −

1
2 , the SureShrink estimator f̂SURE = f̂t̂ essentially performs as well as the op-

timal thresholding estimator, and thus attains the minimax risk over Besov balls Bsp,q(L) within multiplicative
constants:

sup
f∈Bs

p,q(L)

Ef‖f̂SURE − f‖22 ≤ (1 + o(1)) · inf
(tj)j≥j0

sup
f∈Bs

p,q(L)

Ef‖f̂t − f‖22 (59)

. inf
f̂

sup
f∈Bs

p,q(L)

Ef‖f̂ − f‖22. (60)

6 Minimax Lr Risk over Besov Balls

In the previous sections we have studied the nonparametric function estimation problem over Besov balls
using the mean squared error loss, where we have used the L2 isometry to establish the transformation from
the function domain to the wavelet domain. However, we remark that the L2 isometry is not essential here:
the same thresholding idea also applies to general Lr error, for r ∈ [1,∞]. Furthermore, note that we have
shown the minimax optimality of various estimators without specifying the value of the minimax risk, for
completeness we give the most general result here.

Theorem 17. 10 For any s > 1
p −

1
r , p, q, r ∈ [1,∞], the minimax Lr risk in estimating the function f over

Besov balls Bsp,q(L) is given by

(
inf
f̂

sup
f∈Bs

p,q(L)

Ef‖f̂ − f‖rr

) 1
r

�


(ε2)

s
2s+1 if r < (2s+ 1)p

(ε2 log(1/ε))
s

2s+1 (log(1/ε))( 1
2−

p
qr )+ if r = (2s+ 1)p

(ε2 log(1/ε))

s− 1
p
+ 1

r

2(s− 1
p
)+1 if r > (2s+ 1)p

. (61)

9D. L. Donoho, and I. M. Johnstone. Adapting to unknown smoothness via wavelet shrinkage. Journal of the American
statistical association, 90(432), pp. 1200–1224, 1995.

10D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, and D. Picard. Density estimation by wavelet thresholding. The Annals
of Statistics, pp. 508–539, 1996.

12



In contrast, the minimax linear risk in estimating the function f over Besov balls Bsp,q(L) is given by

(
inf
f̂ lin

sup
f∈Bs

p,q(L)

Ef‖f̂ lin − f‖rr

) 1
r

�


(ε2)

s
2s+1 if r ≤ p

(ε2)

s− 1
p
+ 1

r

2(s− 1
p
+ 1

r
)+1 if p < r <∞

(ε2 log(1/ε))

s− 1
p

2(s− 1
p
)+1 if r =∞

(62)

where the infimum is taken over all possible linear estimators.
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