
EE290 Mathematics of Data Science Lecture 1 - 08/29/2019

Lecture 1: Statistical Decision Theory
Lecturer: Jiantao Jiao Scribe: Jiantao Jiao

In this lecture, we discuss a unified theoretical framework of statistics proposed by Abraham Wald, which
is named statistical decision theory. 1. It was adapted from the notes of lecture 2 of EE378A at Stanford
University taught by Jiantao Jiao and scribed by Andrew Hilger.

1 Goals

1. Evaluation: The theoretical framework should aid fair comparisons between algorithms (e.g., maxi-
mum entropy vs. maximum likelihood vs. method of moments).

2. Achievability: The theoretical framework should be able to inspire the constructions of statistical
algorithms that are (nearly) optimal under the optimality criteria introduced in the framework.

2 Basic Elements of Statistical Decision Theory

1. Statistical Experiment: A family of probability measures P = {Pθ : θ ∈ Θ}, where θ is a parameter
and Pθ is a probability distribution indexed by the parameter.

2. Data: X ∼ Pθ, where X is a random variable observed for some parameter value θ.

3. Objective: g(θ), e.g., inference on the entropy of distribution Pθ.

4. Decision Rule: δ(X). The decision rule need not be deterministic. In other words, there could be a
probabilistically defined decision rule with an associated Pδ|X .

5. Loss Function: L(θ, δ). The loss function tells us how bad we feel about our decision once we find
out the true value of the parameter θ chosen by nature.

Example: Pθ(x) = 1√
2π
e
−(x−θ)2

2 , g(θ) = θ, and L(θ, δ) = (θ − δ)2. In other words, X is normally

distributed with mean θ and unit variance X ∼ N(θ, 1), and we are trying to estimate the mean θ. We judge
our success (or failure) using mean-square error.

3 Risk Function

Definition 1 (Risk Function).

R(θ, δ) , E[L(θ, δ(X))] (1)

=

∫
L(θ, δ(x))Pθ(dx) (2)

=

∫∫
L(θ, δ)Pδ|X(dδ|x)Pθ(dx). (3)

1See Wald, Abraham. ”Statistical decision functions.” In Breakthroughs in Statistics, pp. 342-357. Springer New York,
1992.
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Figure 1: Example risk functions computed over a range of parameter values for two different decision rules.

A risk function evaluates a decision rule’s success over a large number of experiments with fixed parameter
value θ. By the law of large numbers, if we observe X many times independently, the average empirical loss
of the decision rule δ will converge to the risk R(θ, δ).

Even after determining risk functions of two decision rules, it may still be unclear which is better.
Consider the example of Figure 1. Two different decision rules δ1 and δ2 result in two different risk functions
R(θ, δ1) and R(θ, δ2) evaluated over different values on the parameter θ. The first decision rule δ1 is inferior
for low and high values of the parameter θ but is superior for the middle values. Thus, even after computing
a risk function R, it can still be unclear which decision rule is better. We need new ideas to enable us to
compare different decision rules.

4 Optimality Criterion of Decision Rules

Given the risk function of various decision rules as a function of the parameter θ, there are various approaches
to determining which decision rule is optimal.

4.1 Restrict the Competitors

This is a traditional set of methods that were overshadowed by other approaches that we introduce later.
A decision rule δ′ is eliminated (or formally, is inadmissible) if there are any other decision rules δ that
are strictly better, i.e., R(θ, δ′) ≥ R(θ, δ) for any θ ∈ Θ and the inequality becomes strict for at least one
θ0 ∈ Θ. However, the problem is that many decision rules cannot be eliminated in this way and we still
lack a criterion to determine which one is better. Then to aid in selection, the rationale of the approach of
restricting competitors is that only decision rules that are members of a certain decision rule class D are
considered. The advantage is that, sometimes all but one decision rule in D is inadmissible, and we just use
the only admissible one.

1. Example 1: Class of unbiased decision rules D′ = {δ : E[δ(X)] = g(θ),∀θ ∈ Θ}

2. Example 2: Class of invariant estimators.

However, a serious drawback of this approach is that D may be an empty set for various decision theoretic
problems.
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4.2 Bayesian: Average Risk Optimality

The idea is to use averaging to reduce the risk function R(θ, δ) to a single number for any given δ.

Definition 2 (Average risk under prior Λ(dθ)).

r(Λ, δ) =

∫
R(θ, δ)Λ(dθ) (4)

Here Λ is the is the prior distribution, a probability measure on Θ. The Bayesians and the frequentists
disagree about Λ; namely, the frequentists do not believe the existence of the prior. However, there do
exist more justifications of the Bayesian approach than the interpretation of Λ as prior belief: indeed, the
complete class theorem in statistical decision theory asserts that in various decision theoretic problems, all
the admissible decision rules can be approximated by Bayes estimators. 2

Definition 3 (Bayes estimator).

δΛ = arg min
δ
r(Λ, δ) (5)

The Bayes estimator δΛ can usually be found using the principle of computing posterior distributions.
Note that

r(Λ, δ) =

∫∫∫
L(θ, δ)Pδ|X(dδ|x)Pθ(dx)Λ(dθ) (6)

=

∫ (∫∫
L(θ, δ)Pδ|X(dδ|x)Pθ|X(dθ|x)

)
PX(dx) (7)

where PX(dx) is the marginal distribution of X and Pθ|X(dθ|x) is the posterior distribution of θ given X.
In Equation 6, Pθ(dx)Λ(dθ) is the joint distribution of θ and X. In Equation 7, we only have to minimize
the portion in parentheses to minimize r(Λ, δ) because PX(dx) doesn’t depend on δ.

Theorem 4. 3 Under mild conditions,

δΛ(x) = arg min
δ

E[L(θ, δ)|X = x] (8)

= arg min
Pδ|X

∫∫
L(θ, δ)Pδ|X(dδ|x)Pθ|X(dθ|x) (9)

Lemma 5. If L(θ, δ) is convex in δ, it suffices to consider deterministic rules δ(x).

Proof Jensen’s inequality:∫∫
L(θ, δ)Pδ|X(dδ|x)Pθ|X(dθ|x) ≥

∫
L(θ,

∫
δPδ|X(dδ|x))Pθ|X(dθ|x). (10)

Examples

1. L(θ, δ) = (g(θ) − δ)2 ⇒ δΛ(x) = E[g(θ)|X = x]. In other words, the Bayes estimator under squared
error loss is the conditional expectation of g(θ) given x.

2. L(θ, δ) = |g(θ)− δ| ⇒ δΛ(x) is any median of the posterior distribution Pg(θ)|X=x.

3. L(θ, δ) = 1(g(θ) 6= δ) ⇒ δΛ(x) = arg maxg(θ) Pg(θ)|x(g(θ)|X = x). In other words, an indicator loss

function results in a maximum a posteriori (MAP) estimator decision rule4.
2See Chapter 3 of Friedrich Liese, and Klaus-J. Miescke. ”Statistical Decision Theory: Estimation, Testing, and Selection.”

(2009)
3See Theorem 1.1, Chapter 4 of Lehmann EL, Casella G. Theory of point estimation. Springer Science & Business Media;

1998
4Next week, we will cover special cases of Pθ and how to solve Bayes estimator in a computationally efficient way. In the

general case, however, computing the posterior distribution may be difficult.
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4.3 Frequentist: Worst-Case Optimality (Minimax)

Definition 6 (Minimax estimator). The decision rule δ∗ is minimax among all decision rules in D iff

sup
θ∈Θ

R(θ, δ∗) = inf
δ∈D

sup
θ∈Θ

R(θ, δ). (11)

4.3.1 First observation

Since

R(θ, δ) =

∫∫
L(θ, δ)Pδ|X(dδ|x)Pθ(dx) (12)

is linear in Pθ|X , this is a convex function in δ. The supremum of a convex function is convex, so finding the
optimal decision rule is a convex optimization problem. However, solving this convex optimization problem
may be computationally intractable. For example, it may not even be computationally tractable to compute
the supremum of the risk function R(θ, δ) over θ ∈ Θ. Hence, finding the exact minimax estimator is usually
hard.

4.3.2 Second observation

Due to the previous difficulty of finding the exact minimax estimator, we turn to another goal: we wish to
find an estimator δ′ such that

inf
δ

sup
θ
R(θ, δ) ≤ sup

θ
R(θ, δ′) ≤ c · inf

δ
sup
θ
R(θ, δ) (13)

where c > 1 is a constant. The left inequality is trivially true. For the right inequality, in practice one can
usually choose some specific δ′ and evaluate an upper bound of supθ R(θ, δ′) explicitly. However, it remains
to find a lower bound of infδ supθ R(θ, δ). To solve the problem (and save the world), we can use the minimax
theorem.

Theorem 7 (Minimax Theorem (Sion-Kakutani)). Let Λ, X be two compact, convex sets in some topologi-
cally vector spaces. Let function H(λ, x) : Λ×X → R be a continuous function such that:

1. H(λ, ·) is convex for any fixed λ ∈ Λ

2. H(·, x) is concave for any fixed x ∈ X.

Then

1. Strong duality: maxλ minxH(λ, x) = minx maxλH(λ, x)

2. Existence of Saddle point:

∃(λ∗, x∗) : H(λ, x∗) ≤ H(λ∗, x∗) ≤ H(λ∗, x) ∀λ ∈ Λ, x ∈ X.

The existence of saddle point implies the strong duality.

We note that other than the strong duality, the following weak duality is always true without assumptions
on H:

sup
λ

inf
x
H(λ, x) ≤ inf

x
sup
λ
H(λ, x) (14)

We define the quantity rΛ , infδ r(Λ, δ) as the Bayes risk under prior distribution Λ. We have the
following lines of arguments using weak duality:

inf
δ

sup
θ
R(θ, δ) = inf

δ
sup

Λ
r(Λ, δ) (15)

≥ sup
Λ

inf
δ
r(Λ, δ) (16)

= sup
Λ
rΛ (17)
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Equation (17) gives us a strong tool for lower bounding the minimax risk: for any prior distribution Λ, the
Bayes risk under Λ is a lower bound of the corresponding minimax risk. When the condition of the minimax
theorem is satisfied (which may be expected due to the bilinearity of r(Λ, δ) in the pair (Λ, δ)), equation (16)
achieves equality, which shows that there exists a sequence of priors such that the corresponding Bayes risk
sequence converges to the minimax risk.

In practice, it suffices to choose some appropriate prior distribution Λ in order to solve the (nearly)
minimax estimator.
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