EE290 Mathematics of Data Science

Lecture 1 - 08/29/2019

Lecture 1: Statistical Decision Theory

Lecturer: Jiantao Jiao

Scribe: Jiantao Jiao

In this lecture, we discuss a unified theoretical framework of statistics proposed by Abraham Wald, which is named statistical decision theory. ¹. It was adapted from the notes of lecture 2 of EE378A at Stanford University taught by Jiantao Jiao and scribed by Andrew Hilger.

1 Goals

- 1. **Evaluation:** The theoretical framework should aid fair comparisons between algorithms (e.g., maximum entropy vs. maximum likelihood vs. method of moments).
- 2. Achievability: The theoretical framework should be able to inspire the constructions of statistical algorithms that are (nearly) optimal under the optimality criteria introduced in the framework.

2 Basic Elements of Statistical Decision Theory

- 1. Statistical Experiment: A family of probability measures $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$, where θ is a parameter and P_{θ} is a probability distribution indexed by the parameter.
- 2. Data: $X \sim P_{\theta}$, where X is a random variable observed for some parameter value θ .
- 3. **Objective:** $g(\theta)$, e.g., inference on the entropy of distribution P_{θ} .
- 4. Decision Rule: $\delta(X)$. The decision rule need not be deterministic. In other words, there could be a probabilistically defined decision rule with an associated $P_{\delta|X}$.
- 5. Loss Function: $L(\theta, \delta)$. The loss function tells us how bad we feel about our decision once we find out the true value of the parameter θ chosen by nature.

Example: $P_{\theta}(x) = \frac{1}{\sqrt{2\pi}} e^{\frac{-(x-\theta)^2}{2}}$, $g(\theta) = \theta$, and $L(\theta, \delta) = (\theta - \delta)^2$. In other words, X is normally distributed with mean θ and unit variance $X \sim N(\theta, 1)$, and we are trying to estimate the mean θ . We judge our success (or failure) using mean-square error.

3 Risk Function

Definition 1 (Risk Function).

$$R(\theta, \delta) \triangleq \mathbb{E}[L(\theta, \delta(X))] \tag{1}$$

$$= \int L(\theta, \delta(x)) P_{\theta}(dx) \tag{2}$$

$$= \iint L(\theta, \delta) P_{\delta|X}(d\delta|x) P_{\theta}(dx).$$
(3)

¹See Wald, Abraham. "Statistical decision functions." In Breakthroughs in Statistics, pp. 342-357. Springer New York, 1992.

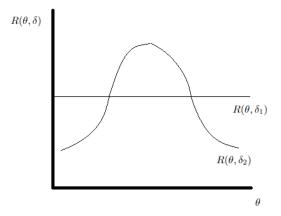


Figure 1: Example risk functions computed over a range of parameter values for two different decision rules.

A risk function evaluates a decision rule's success over a large number of experiments with fixed parameter value θ . By the law of large numbers, if we observe X many times independently, the average empirical loss of the decision rule δ will converge to the risk $R(\theta, \delta)$.

Even after determining risk functions of two decision rules, it may still be unclear which is better. Consider the example of Figure 1. Two different decision rules δ_1 and δ_2 result in two different risk functions $R(\theta, \delta_1)$ and $R(\theta, \delta_2)$ evaluated over different values on the parameter θ . The first decision rule δ_1 is inferior for low and high values of the parameter θ but is superior for the middle values. Thus, even after computing a risk function R, it can still be unclear which decision rule is better. We need new ideas to enable us to compare different decision rules.

4 Optimality Criterion of Decision Rules

Given the risk function of various decision rules as a function of the parameter θ , there are various approaches to determining which decision rule is optimal.

4.1 Restrict the Competitors

This is a traditional set of methods that were overshadowed by other approaches that we introduce later. A decision rule δ' is eliminated (or formally, is *inadmissible*) if there are any other decision rules δ that are strictly better, i.e., $R(\theta, \delta') \ge R(\theta, \delta)$ for any $\theta \in \Theta$ and the inequality becomes strict for at least one $\theta_0 \in \Theta$. However, the problem is that many decision rules cannot be eliminated in this way and we still lack a criterion to determine which one is better. Then to aid in selection, the rationale of the approach of restricting competitors is that only decision rules that are members of a certain decision rule class \mathcal{D} are considered. The advantage is that, sometimes all but one decision rule in \mathcal{D} is inadmissible, and we just use the only admissible one.

- 1. Example 1: Class of unbiased decision rules $\mathcal{D}' = \{\delta : \mathbb{E}[\delta(X)] = g(\theta), \forall \theta \in \Theta\}$
- 2. Example 2: Class of invariant estimators.

However, a serious drawback of this approach is that \mathcal{D} may be an empty set for various decision theoretic problems.

4.2 Bayesian: Average Risk Optimality

The idea is to use averaging to reduce the risk function $R(\theta, \delta)$ to a single number for any given δ .

Definition 2 (Average risk under prior $\Lambda(d\theta)$).

$$r(\Lambda, \delta) = \int R(\theta, \delta) \Lambda(d\theta)$$
(4)

Here Λ is the is the prior distribution, a probability measure on Θ . The Bayesians and the frequentists disagree about Λ ; namely, the frequentists do not believe the existence of the prior. However, there do exist more justifications of the Bayesian approach than the interpretation of Λ as prior belief: indeed, the *complete class theorem* in statistical decision theory asserts that in various decision theoretic problems, all the admissible decision rules can be approximated by Bayes estimators.²

Definition 3 (Bayes estimator).

$$\delta_{\Lambda} = \arg\min_{\delta} r(\Lambda, \delta) \tag{5}$$

The Bayes estimator δ_{Λ} can usually be found using the principle of computing posterior distributions. Note that

$$r(\Lambda,\delta) = \iiint L(\theta,\delta) P_{\delta|X}(d\delta|x) P_{\theta}(dx) \Lambda(d\theta)$$
(6)

$$= \int \left(\iint L(\theta, \delta) P_{\delta|X}(d\delta|x) P_{\theta|X}(d\theta|x) \right) P_X(dx)$$
(7)

where $P_X(dx)$ is the marginal distribution of X and $P_{\theta|X}(d\theta|x)$ is the posterior distribution of θ given X. In Equation 6, $P_{\theta}(dx)\Lambda(d\theta)$ is the joint distribution of θ and X. In Equation 7, we only have to minimize the portion in parentheses to minimize $r(\Lambda, \delta)$ because $P_X(dx)$ doesn't depend on δ .

Theorem 4.³ Under mild conditions,

$$\delta_{\Lambda}(x) = \arg\min_{\delta} \mathbb{E}[L(\theta, \delta) | X = x]$$
(8)

$$= \arg\min_{P_{\delta|X}} \iint L(\theta, \delta) P_{\delta|X}(d\delta|x) P_{\theta|X}(d\theta|x)$$
(9)

Lemma 5. If $L(\theta, \delta)$ is convex in δ , it suffices to consider deterministic rules $\delta(x)$.

Proof Jensen's inequality:

$$\iint L(\theta,\delta)P_{\delta|X}(d\delta|x)P_{\theta|X}(d\theta|x) \ge \int L(\theta,\int\delta P_{\delta|X}(d\delta|x))P_{\theta|X}(d\theta|x).$$
(10)

Examples

- 1. $L(\theta, \delta) = (g(\theta) \delta)^2 \Rightarrow \delta_{\Lambda}(x) = \mathbb{E}[g(\theta)|X = x]$. In other words, the Bayes estimator under squared error loss is the conditional expectation of $g(\theta)$ given x.
- 2. $L(\theta, \delta) = |g(\theta) \delta| \Rightarrow \delta_{\Lambda}(x)$ is any median of the posterior distribution $P_{q(\theta)|X=x}$.
- 3. $L(\theta, \delta) = \mathbb{1}(g(\theta) \neq \delta) \Rightarrow \delta_{\Lambda}(x) = \arg \max_{g(\theta)} P_{g(\theta)|x}(g(\theta)|X = x)$. In other words, an indicator loss function results in a maximum a posteriori (MAP) estimator decision rule⁴.

²See Chapter 3 of Friedrich Liese, and Klaus-J. Miescke. "Statistical Decision Theory: Estimation, Testing, and Selection." (2009)

³See Theorem 1.1, Chapter 4 of Lehmann EL, Casella G. Theory of point estimation. Springer Science & Business Media; 1998

⁴Next week, we will cover special cases of P_{θ} and how to solve Bayes estimator in a computationally efficient way. In the general case, however, computing the posterior distribution may be difficult.

4.3 Frequentist: Worst-Case Optimality (Minimax)

Definition 6 (Minimax estimator). The decision rule δ^* is minimax among all decision rules in \mathcal{D} iff

$$\sup_{\theta \in \Theta} R(\theta, \delta^*) = \inf_{\delta \in \mathcal{D}} \sup_{\theta \in \Theta} R(\theta, \delta).$$
(11)

4.3.1 First observation

Since

$$R(\theta,\delta) = \iint L(\theta,\delta) P_{\delta|X}(d\delta|x) P_{\theta}(dx)$$
(12)

is linear in $P_{\theta|X}$, this is a convex function in δ . The supremum of a convex function is convex, so finding the optimal decision rule is a convex optimization problem. However, solving this convex optimization problem may be computationally intractable. For example, it may not even be computationally tractable to compute the supremum of the risk function $R(\theta, \delta)$ over $\theta \in \Theta$. Hence, finding the exact minimax estimator is usually hard.

4.3.2 Second observation

Due to the previous difficulty of finding the exact minimax estimator, we turn to another goal: we wish to find an estimator δ' such that

$$\inf_{\delta} \sup_{\theta} R(\theta, \delta) \le \sup_{\theta} R(\theta, \delta') \le c \cdot \inf_{\delta} \sup_{\theta} R(\theta, \delta)$$
(13)

where c > 1 is a constant. The left inequality is trivially true. For the right inequality, in practice one can usually choose some specific δ' and evaluate an upper bound of $\sup_{\theta} R(\theta, \delta')$ explicitly. However, it remains to find a lower bound of $\inf_{\delta} \sup_{\theta} R(\theta, \delta)$. To solve the problem (and save the world), we can use the minimax theorem.

Theorem 7 (Minimax Theorem (Sion-Kakutani)). Let Λ , X be two compact, convex sets in some topologically vector spaces. Let function $H(\lambda, x) : \Lambda \times X \to \mathbb{R}$ be a continuous function such that:

- 1. $H(\lambda, \cdot)$ is convex for any fixed $\lambda \in \Lambda$
- 2. $H(\cdot, x)$ is concave for any fixed $x \in X$.

Then

- 1. Strong duality: $\max_{\lambda} \min_{x} H(\lambda, x) = \min_{x} \max_{\lambda} H(\lambda, x)$
- 2. Existence of Saddle point:

$$\exists (\lambda^*, x^*): \qquad H(\lambda, x^*) \leq H(\lambda^*, x^*) \leq H(\lambda^*, x) \quad \forall \lambda \in \Lambda, x \in X.$$

The existence of saddle point implies the strong duality.

We note that other than the strong duality, the following weak duality is always true without assumptions on H:

$$\sup_{\lambda} \inf_{x} H(\lambda, x) \le \inf_{x} \sup_{\lambda} H(\lambda, x)$$
(14)

We define the quantity $r_{\Lambda} \triangleq \inf_{\delta} r(\Lambda, \delta)$ as the *Bayes risk* under prior distribution Λ . We have the following lines of arguments using weak duality:

$$\inf_{\delta} \sup_{\theta} R(\theta, \delta) = \inf_{\delta} \sup_{\Lambda} r(\Lambda, \delta)$$
(15)

$$\geq \sup_{\Lambda} \inf_{\delta} r(\Lambda, \delta) \tag{16}$$

$$=\sup_{\Lambda}r_{\Lambda}$$
(17)

Equation (17) gives us a strong tool for lower bounding the minimax risk: for any prior distribution Λ , the Bayes risk under Λ is a lower bound of the corresponding minimax risk. When the condition of the minimax theorem is satisfied (which may be expected due to the bilinearity of $r(\Lambda, \delta)$ in the pair (Λ, δ)), equation (16) achieves equality, which shows that there exists a sequence of priors such that the corresponding Bayes risk sequence converges to the minimax risk.

In practice, it suffices to choose some appropriate prior distribution Λ in order to solve the (nearly) minimax estimator.