EE 290 Mathematics of Data Science

Final Project

Jiantao Jiao Due: Dec. 15

Project Logistics

The final project can either be a literature review or include original research.

1.

Literature review. We will provide a list of related papers not covered in the lectures, and the
literature review should involve in-depth summaries and exposition of one of these papers.

. Original research. It can be either theoretic or experimental (ideally a mix of the two), with approval

from the instructor. If you choose this option, you can do it either individually or in groups of two.
You are encouraged to combine your current research with your final project.

There are 3 milestones / deliverables to help you through the process.

1.

Proposal (due Oct. 15). Submit a short report (no more than 1 page) to the course staff mailing
list stating the papers you plan to survey or the research problems that you plan to work on. Describe
why they are important or interesting, and provide some appropriate references. If you elect to do
original research, please do not propose an overly ambitious project that cannot be completed by the
end of the semester, and do not be too lured by generality. Focus on the simplest scenarios that can
capture the issues youd like to address.

In-class presentation (Dec. 3 and Dec. 5). Prepare an oral presentation with slides (the exact
time will depend on the number of projects in the class). Focus on high-level ideas, and leave most
technical details to your report.

A written report (due Dec. 15). You are expected to submit a final project reportup to 8 pages in
NeurIPS format with unlimited appendix summarizing your findings / contributions. You must turn
in an electronic copy to the class staff email or submit via gradescope.

The following are a few references collected under certain topics. You are free to dig up more references
of relevance for the project you end up pursuing.

1.

Analysis of spectral method
References: (Huang et al., 2016; Gao et al., 2017; Abbe et al., 2017; Le et al., 2017; Huang et al., 2017)

. Average case lower bound

References: (Ma et al., 2015; Brennan et al., 2019; Brennan and Bresler, 2019b,a)

Adaptive estimation

References: (Bickel, 1982; Birgé and Massart, 1997; Birgé et al., 2001; Yang, 2000; Leung and Barron,
2006; Abramovich et al., 2006; Su et al., 2016; Tsybakov, 2014; Ostrovskii et al., 2018)

. Uncertainty quantification

References: (Javanmard and Montanari, 2013, 2014; Guigues et al., 2017; Juditsky et al., 2019; Chen
et al., 2019b)

Convex optimization and non-convex optimization for statistical inference
References: (Chen et al., 2019a)
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