
EE 290 Theory of Multi-armed Bandits and Reinforcement Learning Lecture 18 - 3/18/2020

Lecture 18: Rmax Exploration
Lecturer: Jiantao Jiao Scribe: Samyak Parajuli, Dimitris Papadimitriou

In this lecture, we finish up the discussion between fixed horizon and infinite horizon and then present the
Rmax algorithm.

1 Fixed Horizon and Infinite Horizon

Let the value iteration outputs be denoted with V π,H(s) = E[
∑H
t=1 γ

t−1rt|s1 = s, π], where π is a fixed time-
invariant policy. Furthermore, let π? denote the optimal policy for the discounted infinite horizon problem.
Then, the following relation holds

V π
?,H ≤ V ?,H(s), (1)

where the left hand side is a particular finite horizon policy and the right hand side is the optimal value for
all possible policies. Furthermore,

V ?,H(s) ≤ V ?(s) (2)

also holds with the right hand side denoting the optimal value for the discounted infinite horizon problem.
Due to the truncation effect V π

?,H(s) ≥ V ?(s)−γH Rmax

1−γ where the subtracted quantity denotes the expected

reward from time step H + 1 to infinity taking into consideration the discount factor γ. Using (2) we obtain

V ?(s)− V ?,H(s) ≤ γH Rmax

1− γ
, (3)

where V ?(s) is the optimal value and V ?,H(s) is the output of value iteration after H steps.

Lemma 1. ‖V ?(s)− V πf (s)‖∞ ≤ 2‖f−Q?‖∞
1−γ , with f ∈ RS×A and πf (s) = arg maxa∈A f(s, a).

Proof For any s ∈ S,

V ?(s)− V πf (s) = Q∗(s, π∗(s))−Q∗(s, πf (s)) +Q∗(s, πf (s))−Qπf (s, πf (s))

≤ Q∗(s, π∗(s))− f(s, π∗(s)) + f(s, πf (s))−Q∗(s, πf (s)) + γEs′∼P (s,πf (s)) [V ∗(s′)− V πf (s′)]

≤ 2‖f −Q∗‖∞ + γ‖V ∗ − V πf ‖∞.

Claim: Output the non-stationary policy in value iteration π̃ = π∗,HQ , π∗,H−1Q , . . . , π∗,1Q and arbitrary

policies for the future then ‖V ∗ − V π̃‖∞ ≤ γH Rmax

1−γ .

2 Rmax Exploration Algorithm

We will assume that the reward function R(s, a) is completely known, and the initial state distribution is
known, but the transition model is unknown. The sampling model is an infinite horizon discounted MDP.
We start with an initial policy and perform a rollout s1, a1, ...st, at for a finite amount of time. We collect
the data, update our policy, obtain another rollout, get a new policy and so on and so forth. We will output
a policy such that VM (π̂) ≥ V ?M − εVmax, where VM (π̂) is the value for a particular MDP and Vmax = Rmax

1−γ .
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2.1 Algorithm

The Rmax algorithm takes as input a threshold parameter m.We denote with n(s, a) the visitation count
for (s, a). We denote with n(s, a, s′) the visitation count for (s, a, s′). The known set K is defined as
K , {(s, a)|n(s, a) = m}. Intuitively, if we have a state action pair that we’ve visited many times, we should
have a good idea of the transition from that pair.

Step 1) Build an MDP M̂k with transitions

P̂k(s′|s, a) =

{
n(s,a,s′)
n(s,a) if (s, a) ∈ k,
I(s′ = s) o.w.

and a reward function

R̂k(s, a) =

{
R(s, a) if (s, a) ∈ K,
Rmax o.w.

.

Step 2) Rollout policy π?
M̂k

and collect new trajectory s1, a1, s2, a2, . . ..

Step 3) For each time step h: if the count of the (state, action, next state) tuple is less than m then we
increment by 1, otherwise we continue. Before digging into the details of Rmax, we first define some notation.

Definition 2. Suppose MDPs M1,M2 are only different in dynamics and denote the transition functions
as P1, P2. Then the dist(M1,M2) = max

s∈S,a∈A
‖P1(s, a))− P2(s, a))‖1 where Pi(s, a) ∈ RS , i = 1, 2 and the `1

norm represents the summation of absolute values.

Definition 3. The induced MDP Mk is defined as

Pk(s′|s, a) =

{
P (s′|s, a) if (s, a) ∈ K
I(s′, s) o.w.

and

Rk(s, a) =

{
R(s, a) if (s, a) ∈ K
Rmax o.w.

.
When m is large enough, M̂k should be close to Mk.

Lemma 4. For fixed (s, a), let p̂ be the empirical distribution of m iid samples from p(s, a). Then
w.p. ≥ 1− δ,

‖p̂− p(s, a))‖1 .

√
1

m
(s+ log(

1

δ
)),

where s is the support size of the distribution p(s, a).

Proof Note that for any vector v ∈ Rs, ‖v‖1 = sup
u∈{−1,1}s

uT v. uT p̂ is the average of i.i.d random variables

with bounded range, so we can use Hoeffding’s inequality and union bound over all u to get:

max
s,a

max
u∈{−1,1}s

uT (p̂− p(s, a)) = max
s,a
‖p̂− p(s, a)‖1 .

√
1

m
(s+ log(

1

δ
)).

Lemma 5. If M1,M2 only differ in transitions, then ‖V ?M1
− V ?M2

‖∞ ≤ dist(M1,M2) Vmax

2(1−γ)
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Proof Let T1 and T2 be the Bellman update operators of M1 and M2 respectively.

‖V ∗M1
− T2V ∗M1

‖∞ = ‖T1V ∗M1
− T2V ∗M1

‖∞
= γ max

s,a∈S×A
|Es′∼P1(s,a)[V

∗
M1

(s′)]− Es′∼P2(s,a)[V
∗
M1

(s′)]|

= γ max
s,a∈S×A

〈P1(s, a)− P2(s, a), V ∗M1
− Vmax/2 · 1|S|×1〉

≤ γ max
s,a∈S×A

‖P1(s, a)− P2(s, a)‖1‖V ∗M1
− Vmax/2 · 1|S|×1‖∞

≤ dist(M1,M2)Vmax/2.

Therefore,

‖V ∗M1
− V ∗M2

‖∞ = ‖V ∗M1
− T2V ∗M1

+ T2V ∗M1
− T2V ∗M2

‖∞
≤ dist(M1,M2) · Vmax/2 + ‖T2V ∗M1

− T2V ∗M2
‖∞

≤ dist(M1,M2) · Vmax/2 + γ‖V ∗M1
− V ∗M2

‖∞.

Lemma 6. If M1,M2 only differ in transitions then ∀π : S → A:

|VM1
(π)− VM2

(π)| ≤ dist(M1,M2)
Vmax

2(1− γ)
.

Proof

|VM1
(π)− VM2

(π)| = |R1(s, π) + γ〈P1(s, π), V πM1
〉 −R2(s, π)− 〈P2(s, π), V πM2

〉|
≤ γ|〈P1(s, π), V πM1

〉 − 〈P2(s, π), V πM1
〉+ 〈P2(s, π), V πM1

〉 − 〈P2(s, π), V πM2
〉|

≤ γ|〈P1(s, π)− P2(s, π), V πM1
〉|+ γ‖V πM1

− V πM2
‖∞

= γ|〈P1(s, π)− P2(s, π), V πM1
− Rmax

2(1− γ)
1〉|+ γ‖V πM1

− V πM2
‖∞

≤ γ‖P1(s, π)− P2(s, π)‖1‖V πM1
− Rmax

2(1− γ)
‖∞ + γ‖V πM1

− V πM2
‖∞

≤ γ dist(M1,M2)Rmax

2(1− γ)
+ γ‖V πM1

− V πM2
‖∞

≤ dist(M1,M2)
Vmax

2(1− γ)
.

The above holds for all s ∈ S and hence we can take the infinity norm on the left hand side to obtain
the final result. We also subtract the quantity Rmax

2(1−γ)1 to center the range of V πM1
, exploiting the fact that

P1 and P2 are valid probability distributions. Finally, we use the results from Lemma 5, and we neglect a γ
term for clarity to obtain the last expression.

Intuitively, what theses lemmas say is that having two MDPs which differ only in transitions, which are
close to each other, then the evaluations of the policy cannot be very different since reward functions are the
same.

Lemma 7. Suppose M1,M2 agree on K ⊂ S ×A in terms of rewards and dynamics. Then

|VM1(π)− VM2(π)| ≤ VmaxPM1(under π trajectory goes out of K).
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Proof Let RM (τ) denote the sum of discounted rewards in a trajectory τ , according to the reward function
of M . We write vπM1

=
∑
τ PM1 [τ |π]RM1(τ) and vπM2

=
∑
τ PM2 [τ |π]RM2(τ). We consider the trajectories

τ for which escapeK(τ) equals 1, where escapeK(τ) is 1 if the arbitrary τ visits some (s, a) /∈ K and 0
otherwise. We define preK(τ) as the “prefix” of τ where every state action pair is in the known set except
the last one. We also define sufK(τ) which is the remainder of the episode. Let R(preK(τ)) be the sum
of discounted rewards within the prefix (or suffix), and PM1

[preK(τ)|π] be the marginal probability of the
prefix assigned by M1 under policy π. We can now upper bound VM1(π) − VM2(π) (the other direction is
similar) as follows:

VM1(π) =
∑

τ : escapeK(τ)=1

PM1 [τ |π](RM1(preK(τ)) +RM1(sufK(τ))) +
∑

τ : escapeK(τ)=0

PM1 [τ |π]RM1(τ)

≤
∑

τ : escapeK(τ)=1

PM1 [τ |π](RM1(preK(τ)) + Vmax) +
∑

τ : escapeK(τ)=0

PM1 [τ |π]RM1(τ)

≤
∑

preK(τ)

PM1 [preK(τ)|π](R(preK(τ)) + Vmax) +
∑

τ : escapeK(τ)=0

PM1 [τ |π]RM1(τ).

The last inequality comes from the fact that for any τ that shares the same prefix, we can combine
their probabilities because R(preK(τ)) + Vmax does not depend on the suffix which gives us the marginal
probability of the prefix. We lower bound V πM2

by relaxing R(sufK(τ)) to 0 and we get

VM2
(π) ≥

∑
preK(τ)

PM2
[preK(τ)|π]RM2

(preK(τ))) +
∑

τ : escapeK(τ)=0

PM2
[τ |π]RM2

(τ).

We observe that when escapeK(τ) = 0, PM1 [τ |π] = PM2 [τ |π] and RM1(τ) = RM2(τ) because since the
trajectory does not go out of K, M1 and M2 will assign the same probability to τ . Therefore, when we
subtract the above two inequalities we get

VM1
(π)− VM2

(π) ≤
∑

preK(τ)

PM1
[preK(τ)|π]Vmax.

We then get the result by noticing that the sum of probabilities is equal to PM1(under π escapeK(τ)).
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