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In this lecture, we present an information-theoretic lower bound for the finite-arm i.i.d. bandits setting.

1 Information-theoretic lower bound for finite-arm i.i.d. bandits

Recall our previous setting: we have K arms and are playing for a horizon of T' rounds with rewards sampled
from [0,1]. Our previously analysis for the ETC and UCB algorithms showed that they yield the upper
bound E[R(T)] < VKT logT, where R(T) is the pseudoregret. Today, we would like to justify our previous
algorithms by showing that this upper bound is close to the information-theoretic lower bound. This lower
bound is valid for any algorithm, i.e. it is a fundamental limit.

Previously, we considered the family of instances of the form v £ {p, : a € A} where each p, was a
probability measure supported on the finite interval [0,1]. Today, we consider the Gaussian family which
has instances of the form v £ {p, = N (pta,1) : a € A,0 < pq < 1}. Gaussians are easy to analyze and have
nice properties such as exponential concentration inequalities. Even for this restricted family, we will see a
lower bound of v KT for the worst-case regret, implying that for a broader class of families we still cannot
do better.!

In order to formulate this lower bound on worst-case regret, we will first introduce the notion of divergence.

Definition 1 (Kullback-Leibler (KL) divergence). For two probability measures P,Q on the same probability
space, the KL divergence is defined as:
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where % is the likelihood ratio and P < QQ means that P is absolutely continuous w.r.t. Q, which is true if

for any set A we have Q(A) =0 = P(A) =0.

Note that the condition P <« @ is critical in order for the ratio dP/dQ to be well-defined. When the prob-

ability measures P and ) have associated probability density functions, given by p(z) and ¢(z) respectively,
then %(aj) = %, and we can write the KL divergence as [ p(z)log %dw. For all probability measures P
and @, two important properties are that D(P||Q) > 0 and D(P||Q) =0 < P =Q.

Example 2 (Likelihood ratio). If we take @ to be the Lebesgue measure, i.e. Q([0 z]) =z, and P([0 z]) =
Jy p(t)dt, then the likelihood ratio is given by:
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Lemma 3 (Divergence Decomposition Lemma). Let v = (p1,pa,...,px) be one instance of rewards distri-
butions for a bandit scenario, and V' = (p,ph,...,p},) be another. Fiz an arbitrary policy 7 consisting of
the time-dependent policies mi(at|ar, 1, az, Ta, ... ,as—1,2¢—1) for 1 <t < T. Let P, be the joint measure

1 Actually, using a KL divergence argument, we can derive the same result for other probability measures up to constants,
so this lower bound holds for bounded random variables in general.



of (A1, X4, A2, Xs, ..., Ap, X1) under instance v and policy w, and P, be defined similarity for instance v’
and policy w. Then the KL divergence between P, and P, can be written as:

k
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where ny (i) is the number of times arm i was pulled by time T. Note that nr(i) is a random variable
depending on both the randomness of the environment and the policy.

Proof First, note that we are defining ;}f:/ on the inputs (A1, X1, Ag, Xo, ..., Ap, X7). For any fixed
sequence (ay,1,das, X, ..,ar,TT), we can write the joint distributions as follows:
T
P,(ay,x2,a9,22,...,a7,27) = Hﬂt(at|a1,x1,a2,xg, ey Qt—1,Tt—1)Da, (T4) (3)
t=1
T
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P, (a1,x2,a2,%2,...,07,27) = Hm(at|a1, T1,02,T2,. .., 1, Tt 1)P,, (Tt) 4)
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Because the policy = is fixed in both P, and P,., when we consider dP,/dP,:, the m; terms cancel out,
leaving only the p,, and p;,, terms. This also removes the conditioning on the past history, simplifying the
expectation. Hence, we can write the log-likelihood ratio cleanly as:
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Using this and the Law of Iterated Expectation, we can derive the result:
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where we have introduced the indicator function 1(-) in Equation (10) and note that nr(i) = Zle 1(A; =1)
to yield Equation (11). O

One interpretation of this result is that given a particular KL divergence D(P,||P,/) for an algorithm, if
D(p;||p}) is small, you expect to have to pull arm ¢ many times to figure out which instance you are in, while
if D(p;||p}) is large, a good algorithm should be able to make the distinction with only a few pulls. Thus,
the metric of D(P,||P,/) is important for understanding how well an algorithm behaves.



Theorem 4. For T > K — 1 and v from the family of Gaussian bandit instances,
infsupE[R(T)] =2 VKT (12)

Proof Let A be some real number in [0, %] Choose mean vector g in environment v to be (A, 0,0, ...,0).

Fix the policy 7 and compute E, [nr(i)] for each .

Then, let i = argmin;_; E,[n7(j)], the arm that is pulled the fewest number of times in expectation.

Because Zle E,[nr(j)] = T and arm i is the least explored, we must have E, [ny(i)] < %

Now for environment v/, pick a new mean vector ' = (A,0,...,0,2A,0,...,0) where 2A is the reward
on the i-th arm. Intuitively, we want to adversarially place a high reward on the arm that 7 pulls the least.

Define R, £ E,[R(T)] and R, = E,,[R(T)]. The following inequalities follow from how often we pull
arm 1, which has mean A:

R,z P, (m) < 3 ) 55 (13)
R, > P, (nT(l) > g) = (14)

where we have noted that in the first instance v, the optimal strategy is to only pull arm 1 and in the second
instance v/, the optimal strategy is to only pull the i-th arm. In the first instance v, the suboptimality of
choosing arm 1 only 7'/2 times is TA/2, and in the second instance v/, the suboptimality of choosing arm 1
more than T/2 times is TA/2. O



