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In this lecture, we present an information-theoretic lower bound for the finite-arm i.i.d. bandits setting.

1 Information-theoretic lower bound for finite-arm i.i.d. bandits

Recall our previous setting: we have K arms and are playing for a horizon of T rounds with rewards sampled
from [0, 1]. Our previously analysis for the ETC and UCB algorithms showed that they yield the upper
bound E[R(T )] .

√
KT log T , where R(T ) is the pseudoregret. Today, we would like to justify our previous

algorithms by showing that this upper bound is close to the information-theoretic lower bound. This lower
bound is valid for any algorithm, i.e. it is a fundamental limit.

Previously, we considered the family of instances of the form ν , {pa : a ∈ A} where each pa was a
probability measure supported on the finite interval [0, 1]. Today, we consider the Gaussian family which
has instances of the form ν , {pa = N (µa, 1) : a ∈ A, 0 ≤ µa ≤ 1}. Gaussians are easy to analyze and have
nice properties such as exponential concentration inequalities. Even for this restricted family, we will see a
lower bound of

√
KT for the worst-case regret, implying that for a broader class of families we still cannot

do better.1

In order to formulate this lower bound on worst-case regret, we will first introduce the notion of divergence.

Definition 1 (Kullback-Leibler (KL) divergence). For two probability measures P,Q on the same probability
space, the KL divergence is defined as:

D(P‖Q) ,

{
Ep
[
log dP

dQ

]
if P � Q

∞ otherwise
(1)

where dP
dQ is the likelihood ratio and P � Q means that P is absolutely continuous w.r.t. Q, which is true if

for any set A we have Q(A) = 0⇒ P (A) = 0.

Note that the condition P � Q is critical in order for the ratio dP/dQ to be well-defined. When the prob-
ability measures P and Q have associated probability density functions, given by p(x) and q(x) respectively,

then dP
dQ (x) = p(x)

q(x) , and we can write the KL divergence as
∫
p(x) log p(x)

q(x)dx. For all probability measures P

and Q, two important properties are that D(P‖Q) ≥ 0 and D(P‖Q) = 0 ⇐⇒ P = Q.

Example 2 (Likelihood ratio). If we take Q to be the Lebesgue measure, i.e. Q([0 x]) = x, and P ([0 x]) =∫ x
0
p(t)dt, then the likelihood ratio is given by:

dP

dQ
=
d
∫ x
0
p(t)dt

dx
= p(x)

Lemma 3 (Divergence Decomposition Lemma). Let ν = (p1, p2, . . . , pk) be one instance of rewards distri-
butions for a bandit scenario, and ν′ = (p′1, p

′
2, . . . , p

′
k) be another. Fix an arbitrary policy π consisting of

the time-dependent policies πt(at|a1, x1, a2, x2, . . . , at−1, xt−1) for 1 ≤ t ≤ T . Let Pν be the joint measure

1Actually, using a KL divergence argument, we can derive the same result for other probability measures up to constants,
so this lower bound holds for bounded random variables in general.
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of (A1, X1, A2, X2, . . . , AT , XT ) under instance ν and policy π, and Pν′ be defined similarity for instance ν′

and policy π. Then the KL divergence between Pν and Pν′ can be written as:

D(Pν‖Pν′) =

k∑
i=1

Eν [nT (i)]D(pi||p′i) (2)

where nT (i) is the number of times arm i was pulled by time T . Note that nT (i) is a random variable
depending on both the randomness of the environment and the policy.

Proof First, note that we are defining dPν
dPν′

on the inputs (A1, X1, A2, X2, . . . , AT , XT ). For any fixed

sequence (a1, x1, a2, x2, . . . , aT , xT ), we can write the joint distributions as follows:

Pν(a1, x2, a2, x2, . . . , aT , xT ) =

T∏
t=1

πt(at|a1, x1, a2, x2, . . . , at−1, xt−1)pat(xt) (3)

Pν′(a1, x2, a2, x2, . . . , aT , xT ) =

T∏
t=1

πt(at|a1, x1, a2, x2, . . . , at−1, xt−1)p′at(xt) (4)

Because the policy π is fixed in both Pν and Pν′ , when we consider dPν/dPν′ , the πt terms cancel out,
leaving only the pat and p′at terms. This also removes the conditioning on the past history, simplifying the
expectation. Hence, we can write the log-likelihood ratio cleanly as:

log
dPν
dPν′

=

T∑
t=1

log
pat(xt)

p′at(xt)
(5)

Using this and the Law of Iterated Expectation, we can derive the result:

D(Pν‖Pν′) = Eν
[
log

dPν
dPν′

]
(6)

=

T∑
t=1

Eν
[
log

pAt(Xt)

p′At(Xt)

]
(7)

=

T∑
t=1

Eν
[
E
[
log

pAt(Xt)

p′At(Xt)

∣∣∣At]] (8)

=

T∑
t=1

Eν
[
D(pAt ||p′At)

]
(9)

=

k∑
i=1

Eν

[
T∑
t=1

1(At = i)D(pAt‖p′At)

]
(10)

=

k∑
i=1

Eν [nT (i)]D(pi||p′i) (11)

where we have introduced the indicator function 1(·) in Equation (10) and note that nT (i) =
∑T
t=1 1(At = i)

to yield Equation (11).

One interpretation of this result is that given a particular KL divergence D(Pν‖Pν′) for an algorithm, if
D(pi‖p′i) is small, you expect to have to pull arm i many times to figure out which instance you are in, while
if D(pi‖p′i) is large, a good algorithm should be able to make the distinction with only a few pulls. Thus,
the metric of D(Pν‖Pν′) is important for understanding how well an algorithm behaves.
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Theorem 4. For T ≥ K − 1 and ν from the family of Gaussian bandit instances,

inf
π

sup
ν

E[R(T )] &
√
KT (12)

Proof Let ∆ be some real number in
[
0, 12
]
. Choose mean vector µ in environment ν to be (∆, 0, 0, . . . , 0).

Fix the policy π and compute Eν [nT (i)] for each i.
Then, let i = arg minj>1 Eν [nT (j)], the arm that is pulled the fewest number of times in expectation.

Because
∑k
j=1 Eν [nT (j)] = T and arm i is the least explored, we must have Eν [nT (i)] ≤ T

k−1 .
Now for environment ν′, pick a new mean vector µ′ = (∆, 0, . . . , 0, 2∆, 0, . . . , 0) where 2∆ is the reward

on the i-th arm. Intuitively, we want to adversarially place a high reward on the arm that π pulls the least.
Define Rν , Eν [R(T )] and Rν′ , Eν′ [R(T )]. The following inequalities follow from how often we pull

arm 1, which has mean ∆:

Rν ≥ Pν
(
nT (1) ≤ T

2

)
T∆

2
(13)

Rν′ > Pν′

(
nT (1) >

T

2

)
T∆

2
(14)

where we have noted that in the first instance ν, the optimal strategy is to only pull arm 1 and in the second
instance ν′, the optimal strategy is to only pull the i-th arm. In the first instance ν, the suboptimality of
choosing arm 1 only T/2 times is T∆/2, and in the second instance ν′, the suboptimality of choosing arm 1
more than T/2 times is T∆/2.
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