EE 290 Theory of Multi-armed Bandits and Reinforcement Learning Lecture 5-2/2/2021

Lecture 5: Minimax Lower Bound for Finite-Arm Bandit Algorithms

Lecturer: Jiantao Jiao
Scribe: Elizabeth Glista, Kevin Lu, Nived Rajaraman

In this lecture, we present an information-theoretic lower bound for the finite-arm i.i.d. bandits setting.

1 Information-theoretic lower bound for finite-arm i.i.d. bandits

Recall our previous setting: we have K arms and are playing for a horizon of T rounds with rewards sampled from $[0,1]$. Our previously analysis for the ETC and UCB algorithms showed that they yield the upper bound $\mathbb{E}[R(T)] \lesssim \sqrt{K T \log T}$, where $R(T)$ is the pseudoregret. Today, we would like to justify our previous algorithms by showing that this upper bound is close to the information-theoretic lower bound. This lower bound is valid for any algorithm, i.e. it is a fundamental limit.

Previously, we considered the family of instances of the form $\nu \triangleq\left\{p_{a}: a \in \mathcal{A}\right\}$ where each p_{a} was a probability measure supported on the finite interval $[0,1]$. Today, we consider the Gaussian family which has instances of the form $\nu \triangleq\left\{p_{a}=\mathcal{N}\left(\mu_{a}, 1\right): a \in \mathcal{A}, 0 \leq \mu_{a} \leq 1\right\}$. Gaussians are easy to analyze and have nice properties such as exponential concentration inequalities. Even for this restricted family, we will see a lower bound of $\sqrt{K T}$ for the worst-case regret, implying that for a broader class of families we still cannot do better. ${ }^{1}$

In order to formulate this lower bound on worst-case regret, we will first introduce the notion of divergence.
Definition 1 (Kullback-Leibler (KL) divergence). For two probability measures P, Q on the same probability space, the $K L$ divergence is defined as:

$$
D(P \| Q) \triangleq \begin{cases}\mathbb{E}_{p}\left[\log \frac{d P}{d Q}\right] & \text { if } P \ll Q \tag{1}\\ \infty & \text { otherwise }\end{cases}
$$

where $\frac{d P}{d Q}$ is the likelihood ratio and $P \ll Q$ means that P is absolutely continuous w.r.t. Q, which is true if for any set A we have $Q(A)=0 \Rightarrow P(A)=0$.

Note that the condition $P \ll Q$ is critical in order for the ratio $d P / d Q$ to be well-defined. When the probability measures P and Q have associated probability density functions, given by $p(x)$ and $q(x)$ respectively, then $\frac{d P}{d Q}(x)=\frac{p(x)}{q(x)}$, and we can write the KL divergence as $\int p(x) \log \frac{p(x)}{q(x)} d x$. For all probability measures P and Q, two important properties are that $D(P \| Q) \geq 0$ and $D(P \| Q)=0 \Longleftrightarrow P=Q$.

Example 2 (Likelihood ratio). If we take Q to be the Lebesgue measure, i.e. $Q\left(\left[\begin{array}{lll}0 & x\end{array}\right]\right)=x$, and $P([0 x])=$ $\int_{0}^{x} p(t) d t$, then the likelihood ratio is given by:

$$
\frac{d P}{d Q}=\frac{d \int_{0}^{x} p(t) d t}{d x}=p(x)
$$

Lemma 3 (Divergence Decomposition Lemma). Let $\nu=\left(p_{1}, p_{2}, \ldots, p_{k}\right)$ be one instance of rewards distributions for a bandit scenario, and $\nu^{\prime}=\left(p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{k}^{\prime}\right)$ be another. Fix an arbitrary policy π consisting of the time-dependent policies $\pi_{t}\left(a_{t} \mid a_{1}, x_{1}, a_{2}, x_{2}, \ldots, a_{t-1}, x_{t-1}\right)$ for $1 \leq t \leq T$. Let P_{ν} be the joint measure

[^0]of $\left(A_{1}, X_{1}, A_{2}, X_{2}, \ldots, A_{T}, X_{T}\right)$ under instance ν and policy π, and $P_{\nu^{\prime}}$ be defined similarity for instance ν^{\prime} and policy π. Then the $K L$ divergence between P_{ν} and $P_{\nu^{\prime}}$ can be written as:
\[

$$
\begin{equation*}
D\left(P_{\nu} \| P_{\nu^{\prime}}\right)=\sum_{i=1}^{k} \mathbb{E}_{\nu}\left[n_{T}(i)\right] D\left(p_{i} \| p_{i}^{\prime}\right) \tag{2}
\end{equation*}
$$

\]

where $n_{T}(i)$ is the number of times arm i was pulled by time T. Note that $n_{T}(i)$ is a random variable depending on both the randomness of the environment and the policy.
Proof First, note that we are defining $\frac{d P_{\nu}}{d P_{\nu^{\prime}}}$ on the inputs $\left(A_{1}, X_{1}, A_{2}, X_{2}, \ldots, A_{T}, X_{T}\right)$. For any fixed sequence $\left(a_{1}, x_{1}, a_{2}, x_{2}, \ldots, a_{T}, x_{T}\right)$, we can write the joint distributions as follows:

$$
\begin{align*}
& P_{\nu}\left(a_{1}, x_{2}, a_{2}, x_{2}, \ldots, a_{T}, x_{T}\right)=\prod_{t=1}^{T} \pi_{t}\left(a_{t} \mid a_{1}, x_{1}, a_{2}, x_{2}, \ldots, a_{t-1}, x_{t-1}\right) p_{a_{t}}\left(x_{t}\right) \tag{3}\\
& P_{\nu^{\prime}}\left(a_{1}, x_{2}, a_{2}, x_{2}, \ldots, a_{T}, x_{T}\right)=\prod_{t=1}^{T} \pi_{t}\left(a_{t} \mid a_{1}, x_{1}, a_{2}, x_{2}, \ldots, a_{t-1}, x_{t-1}\right) p_{a_{t}}^{\prime}\left(x_{t}\right) \tag{4}
\end{align*}
$$

Because the policy π is fixed in both P_{ν} and $P_{\nu^{\prime}}$, when we consider $d P_{\nu} / d P_{\nu^{\prime}}$, the π_{t} terms cancel out, leaving only the $p_{a_{t}}$ and $p_{a_{t}}^{\prime}$ terms. This also removes the conditioning on the past history, simplifying the expectation. Hence, we can write the log-likelihood ratio cleanly as:

$$
\begin{equation*}
\log \frac{d P_{\nu}}{d P_{\nu^{\prime}}}=\sum_{t=1}^{T} \log \frac{p_{a_{t}}\left(x_{t}\right)}{p_{a_{t}}^{\prime}\left(x_{t}\right)} \tag{5}
\end{equation*}
$$

Using this and the Law of Iterated Expectation, we can derive the result:

$$
\begin{align*}
D\left(P_{\nu} \| P_{\nu^{\prime}}\right) & =\mathbb{E}_{\nu}\left[\log \frac{d P_{\nu}}{d P_{\nu^{\prime}}}\right] \tag{6}\\
& =\sum_{t=1}^{T} \mathbb{E}_{\nu}\left[\log \frac{p_{A_{t}}\left(X_{t}\right)}{p_{A_{t}}^{\prime}\left(X_{t}\right)}\right] \tag{7}\\
& =\sum_{t=1}^{T} \mathbb{E}_{\nu}\left[\mathbb{E}\left[\left.\log \frac{p_{A_{t}}\left(X_{t}\right)}{p_{A_{t}}^{\prime}\left(X_{t}\right)} \right\rvert\, A_{t}\right]\right] \tag{8}\\
& =\sum_{t=1}^{T} \mathbb{E}_{\nu}\left[D\left(p_{A_{t}} \| p_{A_{t}}^{\prime}\right)\right] \tag{9}\\
& =\sum_{i=1}^{k} \mathbb{E}_{\nu}\left[\sum_{t=1}^{T} \mathbb{1}\left(A_{t}=i\right) D\left(p_{A_{t}} \| p_{A_{t}}^{\prime}\right)\right] \tag{10}\\
& =\sum_{i=1}^{k} \mathbb{E}_{\nu}\left[n_{T}(i)\right] D\left(p_{i} \| p_{i}^{\prime}\right) \tag{11}
\end{align*}
$$

where we have introduced the indicator function $\mathbb{1}(\cdot)$ in Equation (10) and note that $n_{T}(i)=\sum_{t=1}^{T} \mathbb{1}\left(A_{t}=i\right)$ to yield Equation (11).

One interpretation of this result is that given a particular KL divergence $D\left(P_{\nu} \| P_{\nu^{\prime}}\right)$ for an algorithm, if $D\left(p_{i} \| p_{i}^{\prime}\right)$ is small, you expect to have to pull arm i many times to figure out which instance you are in, while if $D\left(p_{i} \| p_{i}^{\prime}\right)$ is large, a good algorithm should be able to make the distinction with only a few pulls. Thus, the metric of $D\left(P_{\nu} \| P_{\nu^{\prime}}\right)$ is important for understanding how well an algorithm behaves.

Theorem 4. For $T \geq K-1$ and ν from the family of Gaussian bandit instances,

$$
\begin{equation*}
\inf _{\pi} \sup _{\nu} \mathbb{E}[R(T)] \gtrsim \sqrt{K T} \tag{12}
\end{equation*}
$$

Proof Let Δ be some real number in $\left[0, \frac{1}{2}\right]$. Choose mean vector μ in environment ν to be $(\Delta, 0,0, \ldots, 0)$. Fix the policy π and compute $\mathbb{E}_{\nu}\left[n_{T}(i)\right]$ for each i.

Then, let $i=\arg \min _{j>1} \mathbb{E}_{\nu}\left[n_{T}(j)\right]$, the arm that is pulled the fewest number of times in expectation. Because $\sum_{j=1}^{k} \mathbb{E}_{\nu}\left[n_{T}(j)\right]=T$ and arm i is the least explored, we must have $\mathbb{E}_{\nu}\left[n_{T}(i)\right] \leq \frac{T}{k-1}$.

Now for environment ν^{\prime}, pick a new mean vector $\mu^{\prime}=(\Delta, 0, \ldots, 0,2 \Delta, 0, \ldots, 0)$ where 2Δ is the reward on the i-th arm. Intuitively, we want to adversarially place a high reward on the arm that π pulls the least.

Define $\mathcal{R}_{\nu} \triangleq \mathbb{E}_{\nu}[R(T)]$ and $\mathcal{R}_{\nu^{\prime}} \triangleq \mathbb{E}_{\nu^{\prime}}[R(T)]$. The following inequalities follow from how often we pull arm 1 , which has mean Δ :

$$
\begin{gather*}
\mathcal{R}_{\nu} \geq P_{\nu}\left(n_{T}(1) \leq \frac{T}{2}\right) \frac{T \Delta}{2} \tag{13}\\
\mathcal{R}_{\nu^{\prime}}>P_{\nu^{\prime}}\left(n_{T}(1)>\frac{T}{2}\right) \frac{T \Delta}{2} \tag{14}
\end{gather*}
$$

where we have noted that in the first instance ν, the optimal strategy is to only pull arm 1 and in the second instance ν^{\prime}, the optimal strategy is to only pull the i-th arm. In the first instance ν, the suboptimality of choosing arm 1 only $T / 2$ times is $T \Delta / 2$, and in the second instance ν^{\prime}, the suboptimality of choosing arm 1 more than $T / 2$ times is $T \Delta / 2$.

[^0]: ${ }^{1}$ Actually, using a KL divergence argument, we can derive the same result for other probability measures up to constants, so this lower bound holds for bounded random variables in general.

