1 Finishing the Analysis of Successive Elimination

We first recap some crucial information from the last lecture in section 1.1. We then dive into the discussion of instance-dependent and instance-independent bounds in section 1.2.

1.1 Recap

The last lecture presented the crucial property:

$$\Delta(a) \triangleq \mu(a^*) - \mu(a) > 0, \quad \Delta(a) \lesssim \sqrt{\frac{\log(T)}{n_T(a)}} \quad \text{for any sub-optimal arm } a$$ \hspace{1cm} (1)

This property simply states that an arm played too many times cannot be bad and is quite close to the optimal arm - otherwise we would have already eliminated this sub-optimal arm.

The last lecture also showcased the pseudo-regret ($R(T)$) analysis:

$$R(T) = \sum_{t=1}^{T} (\mu^* - \mu_{A_t}) = \sum_{a=1}^{K} n_T(a) \Delta(a) \leq \sum_{a=1}^{K} n_T(a) \sqrt{\frac{\log(T)}{n_T(a)}}$$ \hspace{1cm} (2)

With a further upper-bound using:

$$\sum_{a=1}^{K} n_T(a) = T$$ \hspace{1cm} (3)

There are some algorithms that may be able to remove the $\log(T)$ factor with further discussion and references in Lecture Note 3.

1.2 Instance-dependent and Instance-independent Bounds

Before presenting these bounds, we offer formal terminology. Consider a regret bound of the form $C \cdot f(T)$ where $f(\cdot)$ does not depend on the mean rewards μ, and the constant C does not depend on T. Then the regret bound is **instance-independent** if C does not depend on μ and **instance-dependent** otherwise [1].

INSTANCE-DEPENDENT: For the problem **instance-dependent** bound, we build off equation 1 and rearrange terms to get an upper-bound for $n_T(a)$:

$$n_T(a) \lesssim \frac{\log(T)}{(\Delta(a))^2}$$ \hspace{1cm} (4)

1 Refer to Lecture Note 2 for notation descriptions
This can informally be interpreted as if my sub-optimality is really bad, then definitely this arm would not have been pulled many times.

But we are more interested in upper-bounding the pseudo-regret \((R(T))\) so we first upper-bound the \((\Delta(a)n_T(a))\) term:

\[
\Delta(a)n_T(a) \leq \Delta(a)\frac{\log(T)}{(\Delta(a))^2} = \frac{\log(T)}{\Delta(a)}
\]

Now we plug this bound into equation 2 to obtain the regret bound:

\[
R(T) = \sum_{a=1}^{K} n_T(a)\Delta(a) \lesssim \log(T)\left(\sum_{a: \Delta(a) > 0} \frac{1}{\Delta(a)}\right)
\]

Example: A quick look into asymptotics for the ratio of \(\frac{R(T)}{\log(T)}\) as \(T\) goes to infinity, we quickly show a Gaussian case limit and showcase an exact constant for the bound in the case where each arm is Gaussian with variance of 1:

\[
\lim_{x \to \infty} \frac{R(T)}{\log(T)} = \sum_{a: \Delta(a) > 0} \frac{2}{\Delta(a)}
\]

Algorithms have also been discovered that exactly achieve this constant.

INSTANCE-INDEPENDENT: We now use our *instance-dependent* bound to go to the *instance-independent* bound. To do this, we separate the arms into two cases:

1. The set of arms \(a \in S\) where \(0 < \Delta(a) \leq \epsilon\)
2. The set of arms \(a \in S^C\) where \(\Delta(a) > \epsilon\)

Then we obtain our *instance-independent* bound assuming the clean event:

\[
R(T) = \sum_{a=1}^{K} n_T(a)\Delta(a) = \sum_{a \in S} n_T(a)\Delta(a) + \sum_{a \in S^C} n_T(a)\Delta(a) \leq \epsilon \sum_{a \in S} n_T(a) + \log(T) \sum_{a \in S^C} \frac{1}{\Delta(a)}
\]

Now we look to simplify by upper-bounding individual terms. Using the information from equation 3, we know that the \(\epsilon \sum_{a \in S} n_T(a)\) term is bounded by \(\epsilon T\). And then using information of the porperty of being in the \(S^C\) set and the fact that there are at most \(K\) arms, we can bound the \(\log(T) \sum_{a \in S^C} \frac{1}{\Delta(a)}\) by \(\log(T) \frac{K}{\epsilon}\).

In order to get the strictest upper bound, we use the \(\epsilon\) that minimizes the right side of the \(R(T)\) bound. We do this by setting \(\epsilon T = \log(T) \frac{K}{\epsilon}\) which gives \(\epsilon = \sqrt{\frac{K \log(T)}{T}}\). We now arrive at out final bound:

\[
R(T) \lesssim \sqrt{KT \log(T)}
\]

For more on the successive elimination algorithm, this reference proves useful [2].
2 UCB1 Algorithm

We now discuss the UCB1 Algorithm: *Optimism in the face of Uncertainty.*

1. Try each arm once

2. In each round t, pick $\arg \max_a UCB_t(a)$ where $UCB_t(a) = \bar{\mu}_t(a) + r_t(a)$ and $r_t(a) = \sqrt{\frac{2 \log(T)}{n_t(a)}}$

Algorithm 1: UCB1 Algorithm

Remark Some intuition for this algorithm. In round t, an arm a is chosen due to its large $UCB_t(a)$. The $UCB_t(a)$ is large for a couple reasons: (i) the reward is high meaning $\bar{\mu}_t(a)$ is large; (ii) $r_t(a)$ is large which may imply an under-explored arm. Motivation for either reason of $UCB_t(a)$ being large is reasonable and showcases evidence that the arm is worth choosing by providing a natural way of summing up exploration and exploitation.

For more references on the UCB1 algorithm, this reference is worth reading [3].

2.1 Analysis of UCB1 Algorithm

We want to show that $\Delta(a) \leq 2 \sqrt{\frac{2 \log(T)}{n_t(a)}}$. To show this, we start by considering a clean event. By definition, we start with the expression on the left hand side. By definition of LCB (Lower Confidence Bound), which states that $\mu_a \geq \bar{\mu}_t(a) - r_t(a)$, we can arrange the terms to achieve this inequality.

$$\mu(a) + 2r_t(a) \geq \bar{\mu}_t(a) + r_t(a)$$ (10)

Note that this is exactly our definition of UCB. We thus rewrite as:

$$\mu(a) + 2r_t(a) \geq \bar{\mu}_t(a) + r_t(a) = UCB_t(a)$$ (11)

Note also that at any time t, an action a was only picked if $UCB_t(a) \geq UCB_t(a^*)$. This is by definition. Thus, we have:

$$UCB_t(a) \geq UCB_t(a^*) \geq \mu^*$$ (12)

Combining lines (10) and (12), we see that:

$$\mu(a) + 2r_t(a) \geq \mu^*$$

Substituting in the definition of $\Delta(a)$, we get:

$$\Delta(a) = \mu^* - \mu(a)$$ (13)

$$\leq 2r_t(a)$$ (14)

$$\leq 2 \sqrt{\frac{2 \log(T)}{n_t(a)}}$$ (15)

We have thus shown how to achieve the upper bound.
3 Phased Successive Elimination

Phased Successive Elimination is a variation of Successive Elimination, notably producing an upper-bound that contains a log term that is a function of K, rather than T. This is significant for some forms of the bandit problem (think infinite-horizon problems with a small number of arms).

\begin{algorithm}
\textbf{Algorithm 1:} Phased Successive Elimination
\begin{itemize}
 \item Initialize $A_1 = \{1, 2, ..., K\}$;
 \item Let l denote phase index ;
 \item \textbf{for each phase l do}
 \begin{itemize}
 \item Pull each active arm $a \in A_l$ m_l times ;
 \item Let $\bar{\mu}_l$ be the average reward for arm a ;
 \item Update the active set: $A_{l+1} \triangleq \{a : \bar{\mu}_l + 2^{-l} \geq \max_{j \in A_l} \bar{\mu}_j\}$
 \end{itemize}
 \item \textbf{end}
\end{itemize}
\end{algorithm}

The upper bound of pseudo-regret of this algorithm is $\sqrt{KT\ln K}$. Another interpretation of this algorithm is that we eliminate arms with $\Delta(a) \geq 2^{-l}$.

References

