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Lecture 27: Smoothing Techniques
Lecturer: Nived Rajaraman Scribe: Xin Zhou, Mark Oussoren, Philip Canoza

1 Smooth Approximations of Nonsmooth Functions

As discussed in lecture four, subgradient methods find ϵ-approximate solutions to nonsmooth convex opti-
mization problems in O( 1

ϵ2 ) oracle calls. The subgradient method is poor in the sense that this bound cannot
be improved upon for general black box models of objective functions; however, even simple problems like

min
x∈Rn

{
max
1≤i≤k

xi +
µ

2
∥x∥22

}
, k = 1, 2, . . . , n,

where we understand the structure, are challenging for all numerical methods to optimize. This lecture is
motivated in looking beyond black-box models and leveraging the underlying problem structure to develop
more efficient schemes. In particular, we explore smooth approximations of nonsmooth functions.

Consider a convex function f(·) over a compact set E satisfying the following growth condition globally:

f(x) ≤ f(0) + L∥x∥,

where ∥x∥ = ⟨Bx, x⟩1/2 and B : E → E∗ is a self-adjoint positive definite linear operator (we only considered
the identity map in class). Moreover, we define the Fenchel conjugate of the function by

f∗(s) = max
x∈E

{⟨s, x⟩ − f(x)}, s ∈ E∗.

This latter function is interesting in its own right and we can trivially deduce the following facts regarding
its behavior.

Fact 1. dom(f∗) ⊇ ∂f(y) for all y ∈ E.

Proof For any gy ∈ ∂f(y), we have

f∗(gy) = max
x

{⟨gy, x⟩ − f(x)}

= max
x

{⟨gy, x− y⟩+ ⟨gy, y⟩ − (f(x)− f(y))− f(y)}

= ⟨gy, y⟩ − f(y),

where the last equality stems from convexity of f : ⟨gy, x− y⟩ − (f(x)− f(y)) ≤ 0.

Fact 2. ∀s ∈ dom(f∗), we have ∥s∥ ≤ L.

Proof

f∗(s) = max
x

{⟨s, x⟩ − f(x)}

≥ max
x

{⟨s, x⟩ − L∥x∥}

≥ t(∥s∥2 − L∥s∥),

where in the last inequality we set s = tx in {⟨s, x⟩ −L∥x∥}. If ∥s∥ > L, we know ∥s∥2 −L∥s∥ > 0. Letting
t → ∞, we can show f∗(s) is unbounded which is a contradiction.
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Fact 3. For x ∈ E, g ∈ ∂f(x), we have f(x) + f∗(g) = ⟨g, x⟩.

Proof Rewrite g as gx, and by the proof of Fact 1, we have f∗(gx) = ⟨gx, x⟩ − f(x), that is,

f(x) + f∗(gx) = ⟨gx, x⟩.

Fact 4. For s ∈ dom(f∗), f∗(s) ≥ f∗(g) + ⟨s− g, x⟩.

Proof

f∗(s) = max
s

{⟨s, x⟩ − f(x)}

≥ ⟨s, x⟩ − f(x)

= f∗(g) + ⟨s− g, x⟩,

where the last equality follows from fact 3.

This last fact equivalently says that for all gx ∈ ∂f(x), x ∈ ∂f∗(gx), and furthermore from this fourth fact,
we can construct an equivalent formulation of f using the Fenchel conjugate as follows

f(x) = max
x∈dom(f∗)

{⟨x, s⟩ − f∗(s)} . (1)

Now, we can define a crude, smooth approximation of this newly formulated f by subtracting a quadratic
term in ∥s∥∗:

fµ(x) = max
x∈dom(f∗)

{
⟨x, s⟩ − f∗(s)−

µ

2
(∥s∥∗)2

}
,

where µ ≥ 0 is a smoothing parameter and ∥s∥∗ = ⟨s,B−1s⟩1/2 (again B = I in lecture - so we will just
refrain from using the dual norm from now on). This approximation is pointwise upper bounded by f using
(1), and moreover from fact 2, we have that

fµ(x) ≥ f(x)− 1

2
µL2.

As seen in the following theorem, it can be shown that ∇fµ is µ−1−Lipschitz which affirms this is indeed a
smoothing of f .

Theorem 5 (Lemma 6.1.2 in (1)). The function fµ is differentiable on E, and for all x1, x2 ∈ E,

∥∇fµ(x1)−∇fµ(x2)∥2 ≤ 1

µ
∥x1 − x2∥2.

Proof For i = 1, 2, define the points

s∗i = argmax
s∈dom(f∗)

{⟨xi, s⟩ − f∗(s)−
µ

2
∥s∥22}

which are uniquely determined as fµ is strongly concave. By first-order optimality conditions, there exists
vectors x̃i ∈ ∂f∗(s

∗
i ), such that for all s ∈ dom(f∗),

⟨s− s∗i , xi − x̃i − µs∗i ⟩ ≤ 0.

2



Letting g(x, s) = ⟨x, s⟩ − f∗(s)− µ
2 ∥s∥

2
2 implies this can be rewritten as

⟨s− s∗i ,∇g(xi, s
∗
i )⟩ ≤ 0.

Then subbing in s = s∗i yields two inequalities,

⟨s∗2 − s∗1, x1 − x̃1 − µs∗1⟩ ≤ 0, and ⟨s∗1 − s∗2, x2 − x̃2 − µs∗2⟩ ≤ 0, (2)

that when combined together yield

⟨s∗2 − s∗1, (x2 − x̃2 − µs∗2)− (x1 − x̃1 − µs∗1)⟩ ≤ 0 ⇐⇒ ⟨s∗1 − s∗2, µ(s
∗
1 − s∗2)⟩ ≤ ⟨s∗1 − s∗2, µ(s

∗
1 − s∗2)⟩. (3)

From which, we deduce that

µ∥s∗1 − s∗2∥22 = ⟨s∗1 − s∗2, µs
∗
1 − µs∗2⟩

≤ ⟨s∗1 − s∗2, x1 − x̃1 − (x2 − x̃2)⟩

= ⟨s∗1 − s∗2, x1 − x2⟩ − ⟨s∗1 − s∗2, x̃1 − x̃2⟩

≤ ⟨s∗1 − s∗2, x1 − x2⟩

≤ ∥s∗1 − s∗2∥2∥x1 − x2∥2

(3) above

(2) above

Cauchy-Schwarz

which implies that ∥s∗1 − s∗2∥2 ≤ µ−1∥x1 − x2∥2. By lemma 3.1.10 and theorem 3.1.14 in (1), we have that

∇fµ(xi) = s∗i , for i = 1, 2.

and thus

∥∇fµ(x1)−∇fµ(x2)∥2 ≤ 1

µ
∥x1 − x2∥2.

For nonsmooth convex f , f = f∗∗ and moreover

f∗∗ ≈ max
s∈dom(f∗)

⟨x, s⟩ − f∗(s)−
µ

2
∥s∥22 = fµ(x).

If µ = O(ϵ) and f satisfies the growth condition, we have |f(x)− fµ(x)| = O(ϵ).

2 Minimax model of an Objective Function

Let us explore a candidate example for smoothing - the classic minimax problem whose structure is given by

min
x∈Q1

f(x)

where Q1 ⊆ E1,

f(x) = f̂(x) + max
u∈Q2

{
⟨Ax, u⟩ − ϕ̂(u)

}
,

and Q2 ⊆ E2 (Q1 and Q2 are bounded closed convex sets). Additionally A : E1 → E∗
2 is a linear operator and,

ϕ̂, f̂ are convex and continuous. In lecture, we discussed the case where f is convex, f̂ = 0, ϕ̂(u) = f∗(u),
and A is identity. Then the objective function reduces to the form

f(x) = max
u∈Q2

{⟨x, u⟩ − f∗(u)} = f∗∗(x).

Nesterov continues discussion here on the adjoint problem and examples of using prox-functions to simplify
objective functions in section 6.1.2 of (1), but we pivot our discussion now towards a worked out concrete
example of smoothing.
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2.1 Matrix Games

Consider the following saddle point problem:

min
x∈∆n

max
u∈∆m

{⟨Ax, u⟩+ ⟨c, x⟩+ ⟨b, u⟩}

where A : Rn → Rm, and ∆n denotes the simplex on Rn:

∆n =

{
x ∈ Rn

+ :

n∑
i=1

xi = 1

}
.

In this game, the row and column players have their respective non-smooth minimization problems:

min
x∈∆n

f(x) : f(x) = ⟨c, x⟩+ max
u∈∆m

{⟨Ax, u⟩+ ⟨b, u⟩}

max
u∈∆m

ϕ(u) : ϕ(u) = ⟨b, u⟩+ min
x∈∆n

{⟨Ax, u⟩+ ⟨c, x⟩}

The non-smoothness of the objective comes from the simplex constraint. To see how this game can be
optimized with the tools discussed above, we look at the closely related problem and its dual

f(x) = max
1≤j≤m

|⟨aj , x⟩ − bj |,

f∗(u) = max
x

{
⟨u, x⟩ − max

1≤j≤m
|⟨aj , x⟩ − bj |

}
.

We manipulate the dual form below

f∗(u) = max
x

{
⟨u, x⟩ − max

1≤j≤m
|⟨aj , x⟩ − bj |

}

= max
x

⟨u, x⟩ − max
s:||s||1≤1


m∑
j=1

sj (⟨aj , x⟩ − bj)




= max
x

min
s:||s||1≤1

⟨u, x⟩ −
m∑
j=1

sj (⟨aj , x⟩ − bj)


where the first line is equivalent since we are simply picking out the largest index, and the second line we
pulled the max out and turned it into a min due to the minus sign on the term. Now we can use Sion’s
Minimax theorem to further simplify the expression

f∗(u) = max
x

min
s:||s||1≤1

⟨u, x⟩ −
m∑
j=1

sj (⟨aj , x⟩ − bj)


= min

s:||s||1≤1
max

x

⟨u, x⟩ −
m∑
j=1

sj (⟨aj , x⟩ − bj)


= min

s:||s||1≤1


m∑
j=1

sjbj : As = u


where we now have an alternate way of writing the dual. However, this is not the best choice, since we still
have a L1 loss constraint that is not smooth.
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We may consider a better choice of ϕ̂. We take our original constraint and instead manipulate it:

f(x) = max
1≤j≤m

|⟨aj , x⟩ − bj |

= max
u1,u2∈R2m

 m∑
j=1

(
u1
j − u2

j

)
[⟨aj , x⟩ − bj ] subject to

m∑
j=1

u1
j + u2

j = 1


where we have written f as a linear function under the maximum over the entire domain and not just the
simplex. This alternate way of writing gives the form we are interested in:

f(x) = f̂(x) + max
x∈Q2

{
⟨Ax, u⟩ − ϕ̂(u)

}
where ⟨Ax, u⟩ corresponds with the ⟨aj , x⟩ term and ϕ̂(u) corresponds with bj term and thus smoothing the
objective. In (1), Nesterov employed theorem 6.1.3 from here to yield complexity bounds of O( 1ϵ ) which is
much faster than naive subgradient methods as stated in the beginning.

3 Summary

To summarize, we looked at the smooth approximation to nonsmooth functions using the Fenchel dual
representation. We wrote our objectives in the form

f(x) = f̂ +max
u

{
⟨Ax, u⟩ − ϕ̂(u)

}
which is a nice functional form to optimize. A more in-depth treatment can be found in chapters three and
six of (1).
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