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1 Review

We begin with a brief review of the various stochastic optimization methods we have discussed thus far. In
particular, we consider the specific problem formulation where our objective function is given by the sum of
a set of functions,

min
x

f(x) = min
x

1

n

n∑
i=1

fi(x).

We assume that evaluating ∇fi(x) takes O(1) time, which implies that evaluating ∇f(x) = 1
n

∑n
i=1∇fi(x)

takes O(n) time. Further, we assume that each fi is L-smooth and that f is µ-strongly convex. For gradient
descent (GD), we recall that the number of iterations to achieve ϵ accuracy is O(κ log(1/ϵ)), where we
define the condition number κ = L/µ, and given that the entire gradient ∇f(x) must be computed at every
iteration, the overall query complexity is O(nκ log(1/ϵ)). To attain the same accuracy, stochastic gradient
descent (SGD) requires a greater number of iterations, O(1/(µϵ)), due to the effect of stochasticity, however,
the cost of of each iteration is only O(1) to evaluate a single gradient∇fi(x) such that the query complexity is
O(1/(µϵ)). Stochastic variance reduced gradient (SVRG) achieves a query complexity of O((n+κ) log(1/ϵ)),
which can be seen as a sort of “best of both worlds” between GD and SGD as we now have a factor of n+κ
instead of nκ and the asymptotic behavior of log(1/ϵ) is better than 1/ϵ for small ϵ.

2 Stochastic Variance Reduced Gradient

2.1 Geometrization

We recall from the last lecture that we proved the following performance guarantee for SVRG:

Theorem 1. For s ≥ 0, we have

2η(1− 2ηL) (Ef (x̄s+1)− f∗) + ηµE ∥x̃s+1 − x∗∥2 ≤ 4Lη2 (Ef (x̃s)− f∗) +
1

m
E ∥x̄s − x∗∥2

If η = 1/(8L) and m ≥ 2/(ηµ) = 16L/µ = 16κ, then

Ef (x̃s+1)− f∗ + µE ∥x̃s+1 − x∗∥2 ≤
(
1

2

)s [
f (x̃0)− f∗ + µ ∥x̃0 − x∗∥2

]
We note that to achieve the exponential decay in our particular measure of suboptimality, which combines

the absolute suboptimality with the distance of the final iterate to the minimum, as described in the final
line of the theorem, the upper bound on the length of each epoch m must depend on the condition number
κ = µ/L and by extension the strong convexity parameter µ, which may be difficult to estimate, especially
compared to the smoothness parameter L. Therefore, it would be desirable to avoid such a dependence,
and the technique of geometrization provides a means of precisely accomplishing this [1]. Specifically, we
consider the randomly chosen length of each epoch N to now be distributed geometrically with respect to
m rather than uniformly as before. We also leverage a special property which can be shown to only hold for
geometric distributions,
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Lemma 2. Let N ∼ Geom(m) for m > 0. Then for any sequence D0, D1, . . . with E|DN | <∞,

E (DN −DN+1) =

(
1

m
− 1

)
(D0 − EDN )

Proof By definition of the geometric distribution,

E (DN −DN+1) =
∑
n≥0

(Dn −Dn+1)m
n(1−m)

= (1−m)

D0 −
∑
n≥1

Dn

(
mn−1 −mn

) = (1−m)

 1

m
D0 −

∑
n≥0

Dn

(
mn−1 −mn

)
= (1−m)

 1

m
D0 −

1

m

∑
n≥0

Dnm
n(1−m)

 =

(
1

m
− 1

)
(D0 − EDN ) ,

where in the last equality we have used the fact that E|DN | <∞.

To show how geometrization exactly works, we recall that in the proof of 1, we obtained the following bound
on the distance ∥xk+1 − x∗∥:

E ∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2η(1− 2Lη) (f (xk)− f∗)− µη ∥xk − x∗∥2 + 4Lη2 (f (x̃s)− f∗)

We then performed a telescoping sum, which we were able to express in terms of an expectation with respect
to N ∼ Unif{0, . . . ,m− 1}, to arrive at

E ∥xm − x∗∥2 ≤ E ∥x̃s − x∗∥2−2η(1−2Lη)m (Ef (x̃s+1)− f∗) −µηmE ∥x̃s+1 − x∗∥2+4Lη2m (Ef (x̃s)− f∗)

We notice that the term E ∥xm − x∗∥2 appears in the above expression, and unfortunately we cannot relate
it to x̃s+1 since N is randomly distributed between 0 and m−1. We therefore chose to simply drop the term
by lower bounding it by 0 in deriving the result of 1. As a consequence, the optimal choice of m ends up
requiring knowledge of µ. However, if we instead take N ∼ Geom(m), we can entirely circumvent this issue.
We specifically consider the choice of m = n/(n + 1), which we note is entirely independent of µ. Letting

k = N and defining DN = E ∥xN − x∗∥2, we apply 2 to obtain

E ∥x̃s+1 − x∗∥2 ≤ E ∥x̃s − x∗∥2−2η(1−2Lη)n (Ef (x̃s+1)− f∗) −µηnE ∥x̃s+1 − x∗∥2+4Lη2n (Ef (x̃s)− f∗) .

We see that we now conveniently have E ∥x̃s+1 − x∗∥2 in place of E ∥xm − x∗∥2, which allows us to derive a
tighter bound. Rearranging yields

2η(1− 2ηL) (Ef (x̄s+1)− f∗) +

(
1

n
+ µη

)
E ∥x̃s+1 − x∗∥2 ≤ 4Lη2 (Ef (x̃s)− f∗) +

1

n
E ∥x̄s − x∗∥2

It can then be shown that this result gives the same query complexity as regular SVRG, though we do not
include the proof here for sake of brevity.

3 Randomized Coordinate Descent

3.1 Introduction of Randomized Coordinate Descent

We now introduce another stochastic optimization method known as Randomized Coordinate Descent
(RCD). We consider the case where our objective function is no longer composite, i.e., it cannot be ex-
pressed as f(x) =

∑n
i=1 fi(x). However, we recognize that the gradient can still be decomposed in the

following manner by definition:

∇f(x) =
(
∂f(x)

∂x1
, . . . ,

∂f(x)

∂xn

)
,
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where n now denotes the dimension of the problem. The key idea of RCD is to only compute a single
coordinate of the gradient ∂f(x)/∂xi, which requires less computational cost than computing the entire
gradient ∇f(x), though we note it may not necessarily be the case that we always obtain a factor of n
speedup. The update rule is specifically given by

xt+1 = xt − η∇itf(x)eit ,

where it ∼ Unif{1, . . . , n}, ∇itf(x) = ∂f(x)/∂xi, and eit is the standard basis vector along coordinate it.
We can construct an unbiased estimate of the gradient by appropriate scaling by a factor of n,

g̃(x) = n∇itf(x)eit

such that

Eg̃(x) =
n∑

i=1

∇itf(x)eit = ∇f(x).

We can also characterize the variance,

E∥g̃(x)∥2 =

n∑
i=1

n(∇itf(x))
2 = n∥∇f(x)∥2,

which scales with the dimension of the problem. We recall from our analysis of SGD that if f is Lipschitz,
we can bound the variance of the gradient estimator as E∥g̃(x)∥2 ≤ M2. We then derived a standard
performance guarantee of the form

Ef(x̄)− f∗ ≤ ∥x0 − x∗∥M√
T

,

where x̄ = 1
T

∑T
s=1 xs. If we specifically assume that f is 1-Lipschitz, i.e. ∥∇f(x)∥ ≤ 1, then E∥g̃(x)∥2 ≤ n,

so that M2 = n. Compared to GD, where we simply have M2 = 1, we recognize that RCD is worse by a
factor of n, but this is naturally offset by the fact that we only compute one out of the total n coordinates
of the gradient at each iteration such that the overall query complexity is essentially the same in this case.

3.2 Randomized Coordinate Descent for Smooth Optimization

In this section, we introduce RCD(γ) algorithm for coordinate-wise smooth functions. First, we formally
define the coordinate-wise smoothness.

Assumption 3 (Coordinate-wise Smoothness). A function f : Rn → R is coordinate-wise smooth if there
exists (β1, β2, . . . , βn) s.t.

|∇if(x+ uei)−∇if(x)| ≤ βi|u|, ∀i ∈ [n], ∀x ∈ Rn, ∀u ∈ R.

When f is twice-differentiable, this is equivalent to

(∇2f(x))ii ≤ βi, ∀x ∈ Rn.

Note that when f is convex, we have

λmax(∇2f(x)) ≤ Tr(∇2f(x)) ≤
n∑

i=1

βi,

which implies that f is a smooth function with β =
∑n

i=1 βi.
With the above coordinate-wise smoothness assumption, we start to analyze the convergence rate of

RCD. Recall that GD achieves O( 1
T ) convergence rate for smooth functions with learning rate η = O( 1β ).
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The choice of η is “conservative” in GD, and thus in RCD we use an “aggressive” algorithm RCD(γ). The
updating rule of RCD(γ) is

xt+1 ← xt −
1

βit

(∇itf(x))eit

where the sampling rule is

it ∼ P(it = i) = Pγ(i) =
βγ
i∑n

j=1 β
γ
j

.

Note that the learning rate in RCD is 1
βit

instead of 1
β ≈

1∑n
i=1 βi

as in GD. Therefore, intuitively, the step

size of RCD moving in one direction is n times that of GD. Also, to sample it, we only need access to a
random oracle which returns a uniformly random number between [0, 1], then a binary search with O(log n)
computational time suffices to obtain it.

For notation convenience, we also define

∥ · ∥[γ] =

√√√√ n∑
i=1

βγ
i x

2
i , ∥ · ∥∗[γ] =

√√√√ n∑
i=1

1

βγ
i

x2
i .

Now we provide the theoretical guarantee of RCD(γ).

Theorem 4. For RCD(γ) with T ≥ 2 and function f that is convex and coordinate-wise smooth (Assumption
3), it holds that

E[f(xT )]− f∗ ≤
2R2

1−γ(x1)
∑n

i=1 β
γ
i

T − 1
,

where R1−γ(x1) = supx:f(x)≤f(x1) ∥x− x∗∥[1−γ].

Remark The term R1−γ(x1) can be interpreted as the radius. The term
∑n

i=1 β
γ
i ≈ β when γ ≈ 1.

Therefore, the convergence rate of RCD and GD are of the same order. Moreover, the advantage of RCD
is that the computational cost per iteration (O(log n) per iteration with initial cost O(n)) is much less than
GD (O(n) per iteration).

To prove Theorem 4, we also need the following lemma.

Lemma 5. For any function f that is convex and coordinate-wise smooth (Assumption 3) and for any i,

Ei∼Pγ [f(xt+1)− f(xt)] ≤ −
1

2
∑n

i=1 β
γ
i

(
∥∇f(xt)∥∗[1−γ]

)2

.

Proof The proof starts with the following fact

f

(
x− 1

βi
(∇if(x))ei

)
− f(x) ≤ −1

2βi
(∇if(x))

2, (1)

which is due to the coordinate-wise smoothness of f . By choosing x = xt and taking expectation over both
sides, we can obtain that

Ei∼Pγ
[f(xt+1)− f(xt)] ≤Ei∼Pγ

[
−1
2βi

(∇if(xt))
2

]
=−

n∑
i=1

[
Pγ(i)

2βi
(∇if(xt))

2

]

=− 1

2
∑n

j=1 β
γ
j

n∑
i=1

[
1

β1−γ
i

(∇if(xt))
2

]

=− 1

2
∑n

i=1 β
γ
i

(
∥∇f(xt)∥∗[1−γ]

)2

.
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Proof [Proof of Theorem 4] Let ∆t = f(xt) − f(x∗), then by the convexity of f and Holder’s inequality,
we can obtain that

∆t ≤⟨∇f(xt), xt − x∗⟩
≤∥∇f(xt)∥∗[1−γ]∥xt − x∗∥[1−γ].

By (1), we have f(xt+1) ≤ f(xt) ≤ · · · ≤ f(x1), which implies that ∥xt − x∗∥[1−γ] ≤ R1−γ . Therefore, by
Lemma 5,

E[∆t+1 −∆t] ≤ −
1

2
∑n

i=1 β
γ
i

[
∆2

t

(R1−γ(x1))2

]
=⇒E[

1

∆t
− 1

∆t+1
] ≤ − 1

2(R1−γ(x1))2
∑n

i=1 β
γ
i

∆t

∆t+1
≤ − 1

2(R1−γ(x1))2
∑n

i=1 β
γ
i

.

Finally, by telescoping, we can conclude that

E[∆t] ≤
2R2

1−γ(x1)
∑n

i=1 β
γ
i

T − 1
.

3.3 Randomized Coordinate Descent for Smooth and Strongly Convex Opti-
mization

For smooth and strognly convex function, GD needs O(κ log(1/ε)) iterations to achieve ε-accuracy. The
following theorem shows that the RCD achieves the similar convergence rate.

Theorem 6. For function f that is µ-strongly convex w.r.t. ∥ · ∥[1−γ] and coordinate-wise smooth (Assump-

tion 3), define κγ =
∑n

i=1 βγ
i

µ , then RCD(γ) guarantees that

E[f(xt+1)− f(x∗)] ≤
(
1− 1

κγ

)t

(f(x1)− f(x∗)).

Remark When γ = 1 and L =
∑n

i=1 βi, we have κγ = L
µ , which is consistent with GD.

To prove Theorem 6, we first present the following lemma.

Lemma 7. Let f be µ-strongly convex w.r.t. any norm ∥ · ∥, then

f(x)− f(x∗) ≤ 1

2µ
∥∇f(x)∥2∗.

Proof For any x, y, by the strong convexity and Holder’s inequality, we have

f(x)− f(y) ≤∇f(x)T (x− y)− µ

2
∥x− y∥2

≤∥∇f(x)∥∗∥x− y∥ − µ

2
∥x− y∥2.
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Denote z = ∥x− y∥, then

f(x)− f(y) ≤ z∥∇f(x)∥∗ −
µ

2
z2 ≤ 1

2µ
∥∇f(x)∥2∗.

Choosing y = x∗ completes the proof.

Proof [Proof of Theorem 6] Recall Lemma 5 that for any i, we have

E[f(xt+1)− f(xt)] ≤ −
1

2
∑n

i=1 β
γ
i

(
∥∇f(xt)∥∗[1−γ]

)2

.

By Lemma 7, we can further obtain that

E[f(xt+1)− f(xt)] ≤ −
µ∑n

i=1 β
γ
i

(f(xt)− f(x∗))

=⇒E[∆t+1 −∆t] ≤ −
1

κγ
∆t

=⇒E[∆t+1] ≤ (1− 1

κγ
)E[∆t],

which concludes that

E[f(xt+1)− f(x∗)] ≤
(
1− 1

κγ

)t

(f(x1)− f(x∗)).

3.4 Summary

In this section, we introduced the RCD(γ) algorithm for coordinate-wise smooth and convex functions, which
achieves the same convergence speed as GD while the computational cost per iteration is only O(log n)
compared to O(n) per iteration for GD.

For coordinate-wise smooth and strongly convex functions, RCD(γ) algorithm also achieves the same
convergence speed as GD while the computational cost per iteration is exponentially better than GD.
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