
EE C227C Convex Optimization and Approximation Lecture 25 - 4/19/2022

Lecture 25: Stochastic Variance Reduced Gradient Method
Lecturer: Jiantao Jiao Scribe: Vivek Bharadwaj and Sohom Paul

1 Review of Stochastic Optimization

Last time, we reviewed some classical results in stochastic gradient methods. To recall the problem setup,
we consider some minimization problem

min
x

f(x) := Eξ[F (x, ξ)]

where ξ is some random variable. Rather than querying our gradient oracle for ∇f(x) directly, we instead
have access to a randomized oracle that samples ξ ∼ Dξ, where Dξ is some distribution, and returns
(F (x, ξ),∇xF (x, ξ)).

However, in many cases, the function we want to minimize can be expressed as a sum1

f(x) =
1

n

n∑
i=1

fi(x)

This “stochastic oracle” formulation is very common in machine learning, where the overall loss of our model
can be expressed as a sum of losses over the training point. In such a setting, it is common to have our
stochastic gradient step be sampling i ∼ Uniform[n] and then we get gradient ∇fi. For example, this is
the case for stochastic gradient descent on set of discrete datapoints, where ∇fi is the gradient of the loss
function at a point pi. We have Ei∇fi = ∇f , and we can pass over these data points as many times as
we wish when performing the optimization. Note this approach minimizes the empirical loss 1

m

∑m
i=1 ℓ(x, ξ)

rather than the expected loss Eξℓ(x, ξ). A stochastic oracle can also be used to minimize the latter expression
(which asks us to minimize expected out-of-sample loss based on samples taken from the distribution) but
convergence guarantees require that we only make a single pass over the datapoints [1].

It turns out that this formulation lets us have much more powerful optimization techniques. Intuitively,
this is because drawing a large number of samples i lets us deduce the overall structure of f due to the strong
structure requirements on f .

Let us recall some of the results from the previous lecture. In the general setting where our gradient
queries are∇F (x, ξ), we found that for convex, Lipshitz functions we had O(1/

√
T ) convergence and similarly

for µ-strongly convex Lipschitz functions (with known µ) we have O (1/(µT )) convergence. There are similar
bounds for when the function is L-smooth instead of L-Lipschitz.

However, in the non-stochastic setting we were able to achieve O(1/T ) and O(1/T 2) convergence for
gradient descent and accelerated gradient descent respectively, which is much faster than the bounds above.
We will work to tighten this gap, although we cannot tighten it completely. For general stochastic oracles, a
lower bound by Tsybakov (2003) shows that smoothness of the function f will cannot yield any acceleration
compared to the non-smooth case, ruling out quadratic O(1/T 2) convergence [2, 1]. Nevertheless, we can
interpolate between O(1/

√
T ) and O(1/T ) convergence using the technique of stochastic variance reduction.

2 Stochastic Variance Reduced Gradient Method

Assumptions

Throughout the rest of this lecture, we impose the following assumptions:

1We have a small notation change here; in previous lectures we had f(x) = 1
m

∑m
i=1 fi(x). This change is to be consistent

with the machine learning literature.

1



1. Each fi is L-smooth (e.g. ∥∇fi(x)−∇fi(y)∥ ≤ L ∥x− y∥).

2. The overall function f is µ-strongly convex.

3. Querying ∇fi(x) takes O(1) time and ∇f(x) takes O(n) time. Note that this differs from our previous
lectures, where we assumed querying ∇f(x) takes O(1) time.

Define the condition number κ := L/µ to be some measure of the difficulty of our problem. For sake of
comparison, we consider two algorithms we analyzed previously:

Gradient Descent Stochastic Gradient Descent
Update Rule xk+1 = xk − η 1

n

∑n
i=1∇fi(x) xk+1 = xk − η∇fik(xk)

Iteration Complexity nκ log(1/ε) 1/(µε)

(As a technical aside, note that this setting differs from last lecture because we have Lipschitz gradient
rather than bounded gradient; however, the same bound holds.)

Both gradient descent (GD) and stochastic gradient descent (SGD) correspond to batch gradient descent
(BGD) with different batch sizes, so we expect the run time for BGD to be an interpolation between these
two. However, we have n in the iteration complexity and linear convergence for GD, while for SGD we have
dependence on µ and a much slower convergence rate for small ε. It is rather confusing and we would ideally
like an algorithm that does not depend on knowing µ and L.

2.1 Variance Reduction

We will present an algorithm with iteration complexity (n + κ) log(1/ε). Note that this is much better
than the iteration complexity for GD because we are adding n and κ instead of multiplying. Both of these
numbers can be large in practice.

Recall that for GD we can maintain a fixed learning rate as the step size will naturally decrease as the
gradients decrease. However, for SGD, the noise in the gradient forces us to decrease the learning rate as
we are converging. We ultimately want an algorithm that maintains a low variance gradient estimate while
maintaining the small number of calls to the gradient oracle that SGD affords.

We use the following gradient estimate:

∇fi(x)−∇fi(y) +∇f(y)

for i ∼ Uniform[n]. Note that the first two terms above require only 1 call to the gradient oracle each, while
the last term requires n calls. The sequence of y’s is referred to as a snapshot sequence or centering sequence
and is updated less frequently than x (since it requires the computation of a full gradient of f with respect
to y, O(n) time).

We have two important properties of the gradient estimate above:

1. It is unbiased. We can compute

E[∇fi(x)−∇fi(y) +∇f(y)] = ∇f(x)−∇f(y) +∇f(y) = ∇f(x)

2. If x and y are both very close to the global min of the function, we can use the Lipschitz property of
fi to observe that ∇fi(x)−∇fi(y) ≤ L ∥x− y∥ ≈ 0. This makes the estimator low variance when we
are close to convergence.

The full algorithm is provided in Algorithm 1.
Note that there is a strange random sampling step to choose snapshots, which is not done in practice but

is required for the proof to work. In practice m is increased for each outer loop iteration, because as we get
close to the optimum, we don’t want to recompute ∇f(x̃s) too often.

2



initialize x̃0 and inner loop size m;
for s = 0, 1, 2, . . . do

sample N ∼ Uniform {0, . . . ,m− 1};
start at x0 = x̃s;
for k = 0, 1, 2, . . . do

sample Ik ∼ Uniform[n];
xk+1 ← xk − η [∇fIk(xk)−∇fIk(x̃s)−∇f(x̃s)];

end
x̃s+1 = xN ;

end
Algorithm 1: SVRG Algorithm

2.2 Analysis

We have the following performance guarantee for the SVRG algorithm:

Theorem 1 (Johnson & Zhang, ’13). For s ≥ 0, and the above algorithm, we have

2η(1− 2ηL)(Ef(x̃s+1)− f∗) + ηµE ∥x̃s+1 − x∗∥2 ≤ 4Lη2(Ef(x̃s)− f∗) +
1

m
E ∥x̃s − x∗∥2 (1)

If η = 1/(8L) and m ≥ 2/(ηµ) = 16L/µ = 16κ, then

E[f(x̃s+1)]− f∗ + µE ∥x̃s+1 − x∗∥2 ≤
(
1

2

)s [
f(x̃0)− f∗ + µ ∥x̃0 − x∗∥2

]
(2)

Note the final line tells us that our measure of suboptimality (which combines the absolute suboptimality
and the distance of the optimizer to the optimum) decreases geometrically, so we have O(log(1/ε)) outer
loop iterations.
Proof Define

gi(x) := fi(x)− fi(x
∗)− ⟨∇fi(x∗), x− x∗⟩

and observe gi(x) ≥ 0 using the definition of convexity. Using the fact that fi is L-smooth and Theorem
2.1.5 of [3], we deduce

gi(x) ≥
1

2L
∥∇gi(x)∥2 =

1

2L
∥∇fi(x)−∇fi(x∗)∥2

This immediately implies the following inequality

∥∇fi(x)−∇fi(x∗)∥2 ≤ 2L (fi(x)− fi(x
∗)− ⟨∇fi(x∗), x− x∗⟩)

Taking expectations of both sides, using i ∼ Uniform[n],

E ∥∇fi(x)−∇fi(x∗)∥2 ≤ E [2L (fi(x)− fi(x
∗)− ⟨∇fi(x∗), x− x∗⟩)]

= 2L(f(x)− f(x∗))

where we use the fact that E[∇fi(x∗)] = ∇f(x∗) = 0. The above fact is known as the Fundamental Lemma
of SVRG because it can be used to relate the variance of the observed gradient to the suboptimality gap.
We can still apply a version of SVRG to optimize non-convex functions, but the above lemma no longer
holds and weakens the convergence guarantee. Now, define

hk := ∇fIk(xk)−∇fIk(x̃s) +∇f(x̃s)

3



where we are in the inner loop where we start indexing at x0 = x̃s. All expectations will be with respect to
Ik.

E ∥hk∥2 = E ∥∇fIk(xk)−∇fIk(x∗) +∇fIk(x∗)−∇fIk(x̃s) +∇f(x̃s)∥2

≤ 2E ∥∇fIk(xk)−∇fIk(x∗)∥2 + 2E ∥∇fIk(x̃s)−∇fIk(x∗)−∇f(x̃s) +∇f(x∗)∥2

using the identity (a+ b)2 ≤ 2a2 + 2b2. We continue bounding using the Fundamental Lemma of SVRG

≤ 4L(f(xk)− f∗) + 2Var[∇fIk(x̃s)−∇fIk(x∗)]

≤ 4L(f(xk)− f∗) + 2E ∥∇fIk(x̃s)−∇fIk(x∗)∥2

≤ 4L(f(xk)− f∗) + 4L(f(x̃s)− f∗)

Now, we bound the distance ∥xk+1 − x∗∥:

E∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥ − 2ηE⟨xk − x∗, hk⟩+ η2E∥hk∥2

= ∥xk − x∗∥2 − 2η⟨xk − x∗,∇f(xk)⟩+ η2E ∥hk∥2

≤ ∥xk − x∗∥2 − 2η
(
f(xk)− f(x∗) +

µ

2
∥xk − x∗∥2

)
+ 4Lη2(f(xk)− f(x̃s)− 2f(x∗))

= ∥xk − x∗∥2 − 2η(1− 2Lη)(f(xk)− f(x∗))− µη ∥xk − x∗∥2 + 4Lη2(f(x̃s − f(x∗)))

Using a telescoping argument, we get

E ∥xm − x∗∥2 ≤ E ∥x0 − x∗∥2 − 2η(1− 2Lη)m(Ef(x̃s+1 − f(x∗))

− µηmE ∥x̃s+1 − x∗∥2 + 4Lη2m(Ef(x̃s)− f(x∗))

Dropping the E ∥xm − x∗∥2 term and rearranging gives (1). Plugging in η = 1
8L and m ≥ 2ηµ gives

3η

2
(Ef(x̃s+1)− f(x∗)) + µηE ∥x̃s+1 − x∗∥2 ≤ η

2
(Ef(x̃s)− f(x∗)) +

µη

2
E ∥x̃s − x∗∥2

which implies (2).

3 Additional Notes

References

[1] S. Bubeck, “Convex Optimization: Algorithms and Complexity,” arXiv:1405.4980 [cs, math, stat], Nov.
2015, arXiv: 1405.4980. [Online]. Available: http://arxiv.org/abs/1405.4980

[2] A. B. Tsybakov, “Optimal Rates of Aggregation,” in Learning Theory and Kernel Machines, G. Goos,
J. Hartmanis, J. van Leeuwen, B. Schölkopf, and M. K. Warmuth, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003, vol. 2777, pp. 303–313, series Title: Lecture Notes in Computer Science.
[Online]. Available: http://link.springer.com/10.1007/978-3-540-45167-9 23

[3] Y. Nesterov, Lectures on convex optimization, 2nd ed. Springer, 2018.

4


