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Lecture 23: Continuing Cubic-Regularized Newton’s Method
Lecturer: Jiantao Jiao Scribe: Druv Pai, Peter Tong

Today we will wrap up our discussion of second order methods. We will focus on using second order methods
to minimize general functions. In the previous lecture, we discussed that in general Newton’s method doesn’t
work, so we have many tricks (e.g. cubic regularization to make it converge).

1 Global Convergence

In general, for second-order convergence methods, we want local information to point us in the direction of
the global optima. Our standing assumption for second-order methods is that the Hessian is Lipschitz:

Assumption 1 (Lipschitz Hessian). The function f to optimize has Lipschitz Hessian:∥∥∇2f(x)−∇2f(y)
∥∥ ≤ L ∥x− y∥ ∀x, y ∈ F . (1)

We also use strong convexity assumption, which means that f has a quadratic lower bound.

Assumption 2 (Strong Convexity). The function f to optimize is µ-strongly convex:

f(y)− f(x)− ⟨∇f(x), y − x⟩ ≥ µ

2
∥x− y∥2 ∀x, y ∈ F . (2)

We introduce a radius, which is like a sub-level set for f(x0):

D := max{∥x− x⋆∥ |x ∈ F , f(x) ≤ f(x0)}.

With the first assumption on second-order information and second assumption on strong convexity, we can
easily derive an upper bound of D:

D ≤
[
2

µ
(f(x0)− f⋆)

] 1
2

.

The parameters L, D, and µ are natural parameters for this class of problems. Define

κ :=
LD

µ
.

Intuitively this value κ measures the ”difficulty” of the problem.

• If L is large then the upper bound on the Lipschitzness of ∇2f is large, meaning that the problem is
harder.

• If D is large then the domain is large, meaning that the problem is harder.

• If µ is small then f is not very strongly convex, meaning that the problem is harder.

The correct way to think about convergence of second-order methods is that the time to convergence is
two parts:

• The time to reach the region of super-linear convergence, which can be large.

• The time to convergence once in the super-linear regime, which is usually extremely small.
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The so-called switching values are

ω0 :=
µ3

18L2
=

4

9
ω ω1 :=

3

2
µD2 ω2 :=

3

2
LD3.

If κ ≤ 1, then we take one iteration to get into the super-linear regime, then a short amount of iterations to
converge. If κ > 1: we get

ω0 ≤ ω1 ≤ ω2.

We want to see how many iterations of cubic-regularized Newton’s method it takes to reduce the objective
function value. We break down the analysis into 4 phases:

• (Phase 0) From the initial value f(x0) to ω2;

• (Phase 1) From ω2 to ω1;

• (Phase 2) From ω1 to ω0;

• (Phase 3) From ω0 to some arbitrarily small ε > 0.

1.1 Phase 0

Theorem 4.1.4 of [1] tells us that it takes a single iteration to get from f(x0) to ω2; namely, under the
assumptions provided,

f(x1)− f⋆ ≤ ω2.

The number of iterations for phase 0 is k0 = 1.

1.2 Phase 1

Moreover, the theorem tells us that

ω1 ≤ 3LD3

2
(
1 + k1

3

)2
which implies that k1 ≤ 3

√
κ.

1.3 Phase 2

Theorem 4.1.5 of [1] tells us that if

f(x0)− f⋆ ≥ ω0 =
4

9
ω

then

f(xk)− f⋆ ≤

[
(f(x0)− f⋆)

1/4 − k2
6

√
2

3
ω1/4

]4
.

Solving this for ω0 tells us that

ω
1/4
0 ≤ (f(xk+1)− f⋆)

1/4 − k2
6
ω
1/4
0 .

We solve this for k2 to get
k2 ≤ 33/4

√
2
√
κ ≤ 3.25

√
κ.
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1.4 Phase 3

Now we are in the regime of superlinear convergence. Theorem 4.1.5 of [1] tells us that if we define

δk ≤ 1

4ω0
(f(xk)− f⋆)

then
δk+1 ≤ δ

3/2
k .

And

δk0+k1+k2 ≤ 1

4
.

Thus
f(xk3)− f⋆ ≤ ε⇒ δk0+k1+k2+k3 ≤ ε

4ω0
.

We have
δk0+k1+k2+k3 = δ

(3/2)k3

k0+k1+k2

which implies that

k3 ≤ log3/2

(
log4

(
2µ3

9εL2

))
.

Thus the total number of steps is

N ≤ 6.25

√
LD

µ
+ log3/2

(
log4

(
1

ε

)
+ log4

(
2µ3

9L2

))
.

2 Contrasting with First-Order Methods

If we use gradient descent or accelerated gradient descent, then the idea of large eigenvalue of Hessian really
kills the first order methods but not the second-order methods. Suppose that

D := max {∥x− x⋆∥ |x ∈ F} ,

and
L̂ := λmax(∇2f(x⋆))

and also
µI ≤ ∇2f(x) ≤ (L̂+ LD)I.

Then gradient descent makes the total number of iterations to get accuracy ε is

NGD =
L̂+ LD

µ
log

(
L̂+ LD

ϵ

)

and accelerated gradient descent gives

NAGD =

√
L̂+ LD

µ
log

(
L̂+ LD

ϵ

)
.

This is multiplicative in log
(
1
ϵ

)
, not additive as in our evaluation of cubic-regularized Newton’s method. So

first-order methods are generally worse, with these assumptions. The main bottleneck is, again, the size
of the problem; first-order methods are generally much more efficient. But people are still researching fast
Hessian approximation, so it is possible to use second-order methods in reasonably sized problems.
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3 Acceleration

Vanilla cubic-regularized Newton’s method gets a 1
k2 convergence rate. Recall that gradient descent gets a

1
k convergence rate, and that accelerated gradient descent gets a 1

k2 convergence rate. The question is how
to accelerate the convergence rate of cubic-regularized Newton’s method.

It turns out that there is a simple acceleration to get 1
k3 convergence rate (so-called accelerated cubic-

regularized Newton’s method), which we discuss below. The information-theoretic lower bound is 1
k3.5 which

is widely believed to be tight. However, there is no algorithm – accepted by the community – to achieve this
lower bound.

Assume L is known and define M = 2L, C = 6L. Remember that in Newton’s method, we write TL(x)
to be the function

TL(x) := argmin
x̃∈F

(
f(x) + ⟨∇f(x), x̃− x⟩+

〈
∇2f(x) · (x̃− x), x̃− x

〉
+
L

6
∥x̃− x∥3

)
.

That is, we approximate the third-order Taylor series and find the minimum of the resulting cubic.

Require: L, the Lipschitz constant of ∇2f .
M := 2L
C := 6L
Define ψ1 : x 7→ f(x) + C

6 ∥x− x0∥3
Initialize x0
for k ∈ {1, 2, . . . , } do

vk := argminx ψk(x)
yk := k

k+3xk + 3
k+3vk

xk+1 := TM (yk)

Define ψk+1 : x 7→ ψk(x) +
(k+1)(k+2)

2 [f(xk+1) + ⟨∇f(xk+1), x− xk+1⟩]
This is easily implementable as each term either uses the zeroth, first, or second order information.
Theorem 4.2.3 of [1] says that for k ≥ 1,

f(xk)− f⋆ ≤ 8L

k(k + 1)(k + 2)
∥x0 − x⋆∥3 .

The proof method is very similar to the regular cubic-regularized Newton’s method: define estimate sequence
and do descent, etc.

The theory is not so important. The idea is that if we can compute the Hessian, we definitely should
use the second-order information, using i.e., Newton’s method. If we can only use first-order methods, even
accelerated gradient is not always best; there are problem types where algorithms such as conditional gradient
or Frank-Wolfe algorithm are much faster. And of course this whole picture gets upended if we are dealing
with nonconvex problems, but even some progress in composite optimization has been made there.

Next few lectures:

• Stochastic optimization;

• Conditional gradient;

• Augmented Lagrangian (ADMM);

• Some other ideas of basic optimization, i.e., line search.

4 Stochastic Optimization

We start the topic of stochastic optimization.
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Before machine learning, we had the following formulation:

min
x
f(x) = min

x
Eξ(F (x, ξ))

where ξ is a random variable. This literature is not very well explored.
We can solve this by the following method. Suppose we can compute

g(x, ξ) := ∇xF (x, ξ).

Then we claim that
Eξ(g(x, ξ)) = ∇f(x).

Indeed, this is easy by Fubini’s theorem:

Eξ(g(x, ξ)) = Eξ(∇xF (x, ξ))

= ∇xEξ(F (x, ξ))

= ∇f(x).

Now, because of modern machine learning, we have the particularly important case where ξ is distributed
uniformly over {1, 2, . . . , n}. Here n can be interpreted as the number of data points we have, and we are
minimizing the average loss over all the data points.

By specializing to this case, we can get much better results. However, we will discuss the more general
case first.
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