EE C227C Convex Optimization and Approximation
 Lecture 1 - 03/31/2022

 Lecture 20: Primal-Dual Interior Point Methods

 Lecturer: Banghua Zhu
 Scribe: Amy Guo

In this lecture, we introduce the application of Interior Point (IP) method to Linear Programs (LPs), Conic Quadratic Programs (CQPs), and Semi-definite Programs (SDPs). This scribe is based on the hand-written note by Banghua Zhu. We refer the reader to [1] for more details.

1 Recap of IP Method

For a minimization problem $\min\{c^{\mathsf{T}}x : x \in \mathcal{X}\}$, we first need to find a barrier function F(x) such that for every sequence $\{x_i\}_{i\in\mathbb{N}} \subseteq \operatorname{int}(\mathcal{X})$ and $x \coloneqq \lim_{i\to\infty} x_i \in \partial\mathcal{X}$, it holds that $F(x_i) \to \infty$, as $i \to \infty$. Then, we let $F_t(x) = tc^{\mathsf{T}}x + F(x)$. The central path is defined as: $x_*(t) = \operatorname{argmin}_x F_t(x)$. This transforms the constrained problem to the unconstrained problem.

To solve IP in practice, there are two feasible ways:

- 1. Solve $x_*(t)$ for large t directly.
- 2. Start from $x_*(0)$, iteratively increase t to approach $x_*(t)$, i.e., path-following algorithm in Lec 18.

2 Canonical Barrier (CB)

Consider the problem $\min\{c^{\mathsf{T}}x : Ax - B \in \mathbb{K}\}$, where

$$\mathbb{K} = \mathbb{S}_{+}^{k_1} \times \mathbb{S}_{+}^{k_2} \times \dots \times \mathbb{S}_{+}^{k_p} \times \mathbb{L}^{k_{p+1}} \times \dots \times \mathbb{L}^{k_m} \subset E = \mathbb{S}^{k_1} \times \mathbb{S}^{k_2} \times \dots \times \mathbb{S}^{k_p} \times \mathbb{R}^{k_{p+1}} \times \dots \times \mathbb{R}^{k_m}.$$
(1)

The set $\mathbb{S}^k_+ = \{X \in \mathbb{S}^k \mid X \ge 0\}$ and $\mathbb{L}^k = \{X \in \mathbb{R}^k \mid X_k \ge \sqrt{X_1^2 + \dots + X_{k-1}^2}\}$ refer to the semi-definite cone and Lorentz cone respectively. We remark that the inner product associated with these two cones are defined as: $\langle X_i, Y_i \rangle_{\mathbb{S}^k} = \operatorname{Tr}(X_iY_i), \langle X_i, Y_i \rangle_{\mathbb{R}^k} = X_i^{\mathsf{T}}Y_i$, and therefore $\langle X, Y \rangle_E = \sum_{i=1}^p \operatorname{Tr}(X_iY_i) + \sum_{i=p+1}^m X_i^{\mathsf{T}}Y_i$. To find a proper barrier for the cone defined in (1), it suffices to consider the canonical barriers for \mathbb{S}^k_+ and \mathbb{L}^k first.

- The canonical barrier for semi-definite cones is defined as $S_k(X) = -\ln \det(X)$. The parameter of logarithmic homogeneity of $S_k(X)$ is $\theta(S_k) = k$, i.e., $S_k(tX) = S_k(X) \theta(S_k) \ln t = S_k(X) k \ln t$.
- The canonical barrier for Lorentz cones is defined as $L_k(X) = -\ln(X_k^2 X_1^2 \dots X_{k-1}^2) = -\ln(X^{\top}J_kX)$, where $J_k = \begin{pmatrix} -I_{k-1} \\ 1 \end{pmatrix}$. The parameter of logarithmic homogeneity associated with $L_k(X)$ is $\theta(L_k) = 2$.

Therefore, for $X \in \mathbb{K}$, define $K(X) = S_{k_1}(X_1) + \dots + S_{k_p}(X_p) + L_{k_{p+1}}(X_{p+1}) + \dots + L_{k_m}(X_m)$. Then, K(X) is the canonical barrier for \mathbb{K} with parameter $\theta(K) = \sum_{i \leq p} \theta(S_{k_i}) + \sum_{i=p+1}^m \theta(L_{k_i}) = \sum_{i=1}^p k_i + 2(m-p)$.

Theorem 1 (Properties of CB, Prop 4.3.1 in [1]). The barrier function $K(X) = S_{k_1}(X_1) + \dots + S_{k_p}(X_p) + L_{k_{p+1}}(X_{p+1}) + \dots + L_{k_m}(X_m) = \sum_{i=1}^p -\ln \det(X_i) + \sum_{j=p+1}^m -\ln \left(X_j^{\top}J_{k_j}X_j\right)$ satisfies:

- 1. Barrier property: $K(\cdot)$ is C^{∞} strongly convex function, such that $X^i \in int(\mathbb{L})$, $\lim X^i = X \in \partial \mathbb{K} \Rightarrow K(X^i) \to \infty$ as $i \to \infty$.
- 2. Logarithmically homogeneity: $X \in int(\mathbb{K}), t > 0 \Rightarrow K(tX) = K(X) \theta(K) \ln t$.
- 3. Self-duality: the mapping $X \to -\nabla K(X)$ is a one-to-one mapping from $int(\mathbb{K})$ onto $int(\mathbb{K})$, i.e., $X \in int\mathbb{K}, S = -\nabla K(X) \Leftrightarrow S \in int(\mathbb{K}), X = -\nabla K(S).$

3 Primal-Dual Pair and Geometric Form

Consider a conic programming

Conic Primal (CP)
$$\min_{x} \{ c^{\mathsf{T}} x : Ax - B \in \mathbb{K} \}$$

Conic Dual (CD)
$$\max_{S} \{ \langle B, S \rangle_{E} : A^{*}S = c, S \in \mathbb{K} \},$$
 (2)

where $A^* : \langle X, Ax \rangle_E \equiv x^\top A^* X$.

The above CP and CD can be reformulated in geometric form (cf. Section 1.4.4 in [1])

Primal (P)
$$\min_{X} \{ \langle C, X \rangle_E : X \in (\mathcal{L} - B) \cap \mathbb{K} \}$$

Dual (D)
$$\max_{S} \{ \langle B, S \rangle_E : S \in (\mathcal{L}^{\perp} + C) \cap \mathbb{K} \},$$
 (3)

where $\mathcal{L} = \text{Im}A \equiv \{Ax\}$ and \mathcal{L}^{\perp} is the orthogonal complement of \mathcal{L} . Assume for simplicity that Ker $A = \{0\}$, (P) and (D) are strictly feasible.

4 Primal-Dual Central Path

Path for (CP):

$$x_*(t) = \operatorname{argmin}_x \left[c^{\mathsf{T}} x + \frac{1}{t} K(Ax - B) \right].$$
(4)

Path for (P):

$$X_{*}(t) = Ax_{*}(t) - B$$

= $\operatorname{argmin}_{X \in (\mathcal{L} - B) \cap \operatorname{int}(\mathbb{K})} \langle C, X \rangle + \frac{1}{t} K(X).$ (5)

Path for (D):

$$S_*(t) = \operatorname{argmin}_{S \in (L^{\perp} + c) \cap \operatorname{int} \mathbb{K}} - t \langle B, S \rangle + K(S).$$
(6)

Theorem 2 (Thm 4.4.1, 4.4.2 in [1]). For every t > 0,

$$S_{*}(t) = -t^{-1}\nabla K(X_{*}(t)),$$

$$X_{*}(t) = -t^{-1}\nabla K(S_{*}(t)).$$
(7)

 $X_*(t)$ is fully characterized by 2 properties:

1. $X_*(t)$ is strictly primal feasible.

- 2. $-t^{-1}\nabla K(X_*(t))$ is strictly dual feasible.
- $S_*(t)$ is fully characterized by 2 properties:
 - 1. $S_*(t)$ is strictly dual feasible.
 - 2. $-t^{-1}\nabla K(S_*(t))$ is strictly primal feasible.

Characterization of central path $(X_*(t), S_*(t))$:

- 1. Primal feasibility: $X_*(t)$ strictly primal feasible.
- 2. Dual feasibility: $S_*(t)$ strictly dual feasible.

3. Augmented Complementary Slackness (ACS):

$$S_{*}(t) + t^{-1}\nabla K(X_{*}(t)) = 0$$
(8)

Proposition 3 (Prop 4.4.1 in [1]). It holds that: Duality Gap $(X_*(t), S_*(t)) = t^{-1}\theta(K)$.

Remark: This proposition is similar to Theorem 1 in Lec 18.

5 Distance to Central Path

We use the metric $||H||_Y = \sqrt{\langle [\nabla^2 K(Y)]^{-1} H, H \rangle}$. Given $Z = (X, S), Z_*(t) = (X_*(t), S_*(t))$, we define there distance as

$$\operatorname{dist}(z, Z_*(t)) \triangleq \|t \cdot S + \nabla K(X)\|_X = \sqrt{\left\langle \left[\nabla^2 K(X)\right]^{-1} \left(tS + \nabla K(X)\right), tS + \nabla K(X)\right\rangle}.$$
(9)

Proposition 4 (Properties of dist (\cdot, \cdot) , Page 283 of [1]). The followings hold:

- 1. dist $(Z, Z_*(t)) = 0$ iff $S = -t^{-1} \nabla K(X)$, which implies $Z = Z_*(t)$.
- 2. dist $(Z, Z_*(t)) \leq 1 \Rightarrow Duality Gap(X, S) \leq 2\theta(K)/t$.

6 Tracing the Central Path

Given $(\bar{t}, \bar{X}, \bar{S})$ such that $\bar{X} \in \mathcal{L} - B$, $\bar{S} \in \mathcal{L}^+ + C$ and satisfies the system of nonlinear equations $G_{\bar{t}}(\bar{X}, \bar{S}) := \bar{S} + \bar{t}^{-1} \nabla K(\bar{X}) = 0$, we want to find another tuple (t_+, X_+, S_+) such that $t_+ > \bar{t}, X_+ \in \mathcal{L} - B, S_+ \in \mathcal{L}^+ + C$, and $G_{t_+}(X_t, S_t) = S_+ + t_+^{-1} \nabla K(X_+) = 0$. The idea to find such a tuple is the following:

- Find $t_+ > \overline{t}$.
- Linearize $G_{t_+}(X,S)$ at (\bar{X},\bar{S}) .
- Solving the system

$$\begin{cases} G_{t_{+}}(X,S) + \frac{\partial G_{t_{+}}(\bar{X},\bar{X})}{\partial X}(\bar{X}-\bar{X}) + \frac{\partial G_{t_{+}}(\bar{X},\bar{S})}{\partial S}(S-\bar{S}) = 0\\ \Delta X = X - \bar{X} \in \mathcal{L}\\ \Delta S = S - \bar{S} \in \mathcal{L}^{\perp} \end{cases}$$
(10)

which is equivalent to

$$\begin{cases}
A^* [\nabla^2 K(\bar{X})] A \Delta X = -[t_+ c + A^* \nabla K(\bar{X})] \\
\Delta X = A \Delta X \\
A^* \Delta = 0
\end{cases}$$
(11)

Upon solving the equation, let $(X_+, S_+) = (\bar{X} + \Delta X, \bar{S} + \Delta S)$.

We remark that, $x_+ = \bar{x} - [\nabla^2 F_{t_+}(x)]^{-1} \nabla F_{t_+}(x)$, where $F_{t_t}(x) = tc^{\mathsf{T}}x + K(Ax - B)$. The process described above is purely primal.

7 Special Example: IP for SDP

For the special case of semi-definite programs, consider the system of equation $G_t(X, S)$ as defined in Section 6:

$$G_t(X,S) \equiv S + t^{-1} \nabla K(X) = S - t^{-1} X^{-1} = 0$$
(12)

Multiplying both sides by X and rearranging terms, we obtain

$$XS = t^{-1}I, \quad SX = t^{-1}I \Rightarrow XS + SX = 2t^{-1}I \tag{13}$$

Then, we apply Q-scaling. For every Q > 0, consider $\tilde{X} = QXQ, \tilde{S} = Q^{-1}SQ^{-1}$. With some rearrangements, we get

$$Q^{-1}SXQ = t^{-1}I, \quad QXSQ^{-1} = t^{-1}I \Rightarrow QXSQ^{-1} + Q^{-1}SXQ = 2t^{-1}I \Leftrightarrow \tilde{X}\tilde{S} + \tilde{S}\tilde{X} = 2t^{-1}I$$
(14)

Remark We make the following remarks:

- 1. Q-scaling: $X \to QXQ$ is one-to-one mapping from cone to itself.
- 2. Q is flexible as it is iteration-dependent. For $\forall \Delta X \in \mathcal{L}$ and $\Delta S \in \mathcal{L}^{\perp}$, we have

$$Q_{i} \left[\Delta X S_{i} + X_{i} \Delta S \right] Q_{i}^{-1} + Q_{i}^{-1} \left[S_{i} \Delta X + \Delta S X_{i} \right] Q_{i} = 2t_{i+1}^{-1} I - Q_{i} X_{i} S_{i} Q_{i}^{-1} - Q_{i}^{-1} S_{i} X_{i} Q_{i}$$
(15)

- 3. Popular choice of Q:
 - Alizadeh-Haeberly-Overton method: $Q_i = I$.
 - XS-method: $Q_i = S_i^{\frac{1}{2}} \implies S_i^{\frac{1}{2}} X_i S_i^{\frac{1}{2}} = t^{-1} I.$
 - SX-method: $Q_i = X_i^{-\frac{1}{2}} \implies X_i^{\frac{1}{2}} S_i X_i^{\frac{1}{2}} = t^{-1} I.$
 - Nesterov-Todd: $Q_i = \left(X_i^{-\frac{1}{2}} \left(X_i^{\frac{1}{2}} S_i X_i^{\frac{1}{2}}\right)^{-\frac{1}{2}} X_i^{\frac{1}{2}} S_i\right)^{\frac{1}{2}} \Rightarrow \tilde{S} = \tilde{X}.$

References

[1] A. Ben-Tal and A. Nemirovski, Lectures on modern convex optimization: analysis, algorithms, and engineering applications. SIAM, 2001.