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Lecture 20: Primal-Dual Interior Point Methods
Lecturer: Banghua Zhu Scribe: Amy Guo

In this lecture, we introduce the application of Interior Point (IP) method to Linear Programs (LPs), Conic
Quadratic Programs (CQPs), and Semi-definite Programs (SDPs). This scribe is based on the hand-written
note by Banghua Zhu. We refer the reader to [1] for more details.

1 Recap of IP Method
For a minimization problem min{c⊺x ∶ x ∈ X}, we first need to find a barrier function F (x) such that for
every sequence {xi}i∈N ⊆ int(X ) and x ∶= limi→∞ xi ∈ ∂X , it holds that F (xi) →∞, as i →∞. Then, we let
Ft(x) = tc⊺x + F (x). The central path is defined as: x∗(t) = argminx Ft(x). This transforms the constrained
problem to the unconstrained problem.

To solve IP in practice, there are two feasible ways:

1. Solve x∗(t) for large t directly.

2. Start from x∗(0), iteratively increase t to approach x∗(t), i.e., path-following algorithm in Lec 18.

2 Canonical Barrier (CB)
Consider the problem min{c⊺x ∶ Ax −B ∈ K}, where

K = Sk1
+ × Sk2

+ ×⋯ × S
kp

+ ×Lkp+1 ×⋯ ×Lkm ⊂ E = Sk1 × Sk2 ×⋯ × Skp ×Rkp+1 ×⋯ ×Rkm . (1)

The set Sk+ = {X ∈ Sk ∣X ⪰ 0} and Lk = {X ∈ Rk ∣Xk ≥
√
X2

1 +⋯ +X2
k−1} refer to the semi-definite cone and

Lorentz cone respectively. We remark that the inner product associated with these two cones are defined
as: ⟨Xi, Yi⟩Sk = Tr (XiYi), ⟨Xi, Yi⟩Rk =X⊺i Yi, and therefore ⟨X,Y ⟩E = ∑

p
i=1Tr (XiYi) +∑m

i=p+1X
⊺
i Yi. To find

a proper barrier for the cone defined in (1), it suffices to consider the canonical barriers for Sk+ and Lk first.

• The canonical barrier for semi-definite cones is defined as Sk(X) = − ln det(X). The parameter of
logarithmic homogeneity of Sk(X) is θ(Sk) = k, i.e., Sk(tX) = Sk(X) − θ(Sk) ln t = Sk(X) − k ln t.

• The canonical barrier for Lorentz cones is defined as Lk(X) = − ln(X2
k −X2

1 − ⋅ ⋅ ⋅ −X2
k−1) = − ln(X⊺JkX),

where Jk = (
−Ik−1

1
). The parameter of logarithmic homogeneity associated with Lk(X) is

θ(Lk) = 2.

Therefore, for X ∈ K, define K(X) = Sk1 (X1)+⋯+Skp (Xp)+Lkp+1 (Xp+1)+⋯+Lkm (Xm). Then, K(X)
is the canonical barrier for K with parameter θ(K) = ∑i≤p θ (Ski) +∑m

i=p+1 θ (Lki) = ∑
p
i=1 ki + 2(m − p).

Theorem 1 (Properties of CB, Prop 4.3.1 in [1]). The barrier function K(X) = Sk1 (X1) +⋯ + Skp (Xp) +
Lkp+1 (Xp+1) +⋯ +Lkm (Xm) = ∑p

i=1 − ln det (Xi) +∑m
j=p+1 − ln (X⊺j JkjXj) satisfies:

1. Barrier property: K(⋅) is C∞ strongly convex function, such that Xi ∈ int(L), limXi = X ∈ ∂K ⇒
K(Xi)→∞ as i→∞.

2. Logarithmically homogeneity: X ∈ int(K), t > 0⇒K(tX) =K(X) − θ(K) ln t.

3. Self-duality: the mapping X → −∇K(X) is a one-to-one mapping from int(K) onto int(K), i.e.,
X ∈ intK, S = −∇K(X)⇔ S ∈ int(K),X = −∇K(S).
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3 Primal-Dual Pair and Geometric Form
Consider a conic programming

Conic Primal (CP) min
x
{c⊺x ∶ Ax −B ∈ K}

Conic Dual (CD) max
S
{⟨B,S⟩E ∶ A∗S = c, S ∈ K} ,

(2)

where A∗ ∶ ⟨X,Ax⟩E ≡ x⊺A∗X.
The above CP and CD can be reformulated in geometric form (cf. Section 1.4.4 in [1])

Primal (P) min
X
{⟨C,X⟩E ∶X ∈ (L −B) ∩K}

Dual (D) max
S
{⟨B,S⟩E ∶ S ∈ (L⊥ +C) ∩K} ,

(3)

where L = ImA ≡ {Ax} and L⊥ is the orthogonal complement of L. Assume for simplicity that KerA = {0},
(P) and (D) are strictly feasible.

4 Primal-Dual Central Path
Path for (CP):

x∗(t) = argminx [c⊺x +
1

t
K(Ax −B)] . (4)

Path for (P):
X∗(t) = Ax∗(t) −B

= argminX∈(L−B)∩int(K)⟨C,X⟩ +
1

t
K(X).

(5)

Path for (D):
S∗(t) = argminS∈(L⊥+c)∩ int K −t⟨B,S⟩ +K(S). (6)

Theorem 2 (Thm 4.4.1, 4.4.2 in [1]). For every t > 0,

S∗(t) = −t−1∇K (X∗(t)) ,
X∗(t) = −t−1∇K (S∗(t)) .

(7)

X∗(t) is fully characterized by 2 properties:

1. X∗(t) is strictly primal feasible.

2. −t−1∇K (X∗(t)) is strictly dual feasible.

S∗(t) is fully characterized by 2 properties:

1. S∗(t) is strictly dual feasible.

2. −t−1∇K (S∗(t)) is strictly primal feasible.

Characterization of central path (X∗(t), S∗(t)):
1. Primal feasibility: X∗(t) strictly primal feasible.

2. Dual feasibility: S∗(t) strictly dual feasible.

3. Augmented Complementary Slackness (ACS):

S∗(t) + t−1∇K (X∗(t)) = 0 (8)

Proposition 3 (Prop 4.4.1 in [1]). It holds that: Duality Gap (X∗(t), S∗(t)) = t−1θ(K).
Remark: This proposition is similar to Theorem 1 in Lec 18.
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5 Distance to Central Path

We use the metric ∥H∥Y =
√
⟨[∇2K(Y )]−1H,H⟩. Given Z = (X,S), Z∗(t) = (X∗(t), S∗(t)), we define there

distance as

dist(z,Z∗(t)) ≜ ∥t ⋅ S +∇K(X)∥X =
√
⟨[∇2K(X)]−1 (tS +∇K(X)), tS +∇K(X)⟩. (9)

Proposition 4 (Properties of dist(⋅, ⋅), Page 283 of [1]). The followings hold:

1. dist (Z,Z∗(t)) = 0 iff S = −t−1∇K(X), which implies Z = Z∗(t).

2. dist (Z,Z∗(t)) ≤ 1 ⇒ Duality Gap(X,S) ≤ 2θ(K)/t.

6 Tracing the Central Path
Given (t̄, X̄, S̄) such that X̄ ∈ L −B, S̄ ∈ L+ +C and satisfies the system of nonlinear equations Gt̄(X̄, S̄) ∶=
S̄ + t̄−1∇K(X̄) = 0, we want to find another tuple (t+,X+, S+) such that t+ > t̄, X+ ∈L −B, S+ ∈ L+ +C, and
Gt+ (Xt, St) = S+ + t−1+ ∇K (X+) = 0. The idea to find such a tuple is the following:

• Find t+ > t̄.

• Linearize Gt+(X,S) at (X̄, S̄).

• Solving the system

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Gt+(X,S) + ∂Gt+(X̄,X̄)
∂X

(X̄ − X̄) + ∂Gt+(X̄,S̄)
∂S

(S − S̄) = 0
∆X =X − X̄ ∈ L
∆S = S − S̄ ∈ L⊥

(10)

which is equivalent to
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A∗[∇2K(X̄)]A∆X = − [t+c +A∗∇K(X̄)]
∆X = A∆X

A∗∆ = 0
(11)

Upon solving the equation, let (X+, S+) = (X̄ +∆X, S̄ +∆S).

We remark that, x+ = x̄ − [∇2Ft+(x)]
−1∇Ft+(x), where Ftt(x) = tc⊺x +K(Ax −B). The process described

above is purely primal.

7 Special Example: IP for SDP
For the special case of semi-definite programs, consider the system of equation Gt(X,S) as defined in Section
6:

Gt(X,S) ≡ S + t−1∇K(X) = S − t−1X−1 = 0 (12)

Multiplying both sides by X and rearranging terms, we obtain

XS = t−1I, SX = t−1I ⇒XS + SX = 2t−1I (13)

Then, we apply Q-scaling. For every Q ≻ 0, consider X̃ = QXQ, S̃ = Q−1SQ−1. With some rearrangements,
we get

Q−1SXQ = t−1I, QXSQ−1 = t−1I ⇒ QXSQ−1 +Q−1SXQ = 2t−1I⇔ X̃S̃ + S̃X̃ = 2t−1I (14)

Remark We make the following remarks:
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1. Q-scaling: X → QXQ is one-to-one mapping from cone to itself.

2. Q is flexible as it is iteration-dependent. For ∀∆X ∈ L and ∆S ∈ L⊥, we have

Qi [∆XSi +Xi∆S]Q−1i +Q−1i [Si∆X +∆SXi]Qi = 2t−1i+1I −QiXiSiQ
−1
i −Q−1i SiXiQi (15)

3. Popular choice of Q:

• Alizadeh-Haeberly-Overton method: Qi = I.

• XS-method: Qi = S
1
2

i ⇒ S
1
2

i XiS
1
2

i = t−1I.

• SX-method: Qi =X
− 1

2

i ⇒ X
1
2

i SiX
1
2

i = t−1I.

• Nesterov-Todd: Qi = (X
− 1

2

i (X
1
2

i SiX
1
2

i )
− 1

2

X
1
2

i Si)
1
2

⇒ S̃ = X̃.
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