$$
\begin{aligned}
& \text { EE C227C Convex Optimization and Approximation Lecture } 1-03 / 31 / 2022 \\
& \text { Lecture 20: Primal-Dual Interior Point Methods } \\
& \text { Lecturer: Banghua Zhu }
\end{aligned}
$$

In this lecture, we introduce the application of Interior Point (IP) method to Linear Programs (LPs), Conic Quadratic Programs (CQPs), and Semi-definite Programs (SDPs). This scribe is based on the hand-written note by Banghua Zhu. We refer the reader to [1] for more details.

1 Recap of IP Method

For a minimization problem $\min \left\{c^{\top} x: x \in \mathcal{X}\right\}$, we first need to find a barrier function $F(x)$ such that for every sequence $\left\{x_{i}\right\}_{i \in \mathbb{N}} \subseteq \operatorname{int}(\mathcal{X})$ and $x:=\lim _{i \rightarrow \infty} x_{i} \in \partial \mathcal{X}$, it holds that $F\left(x_{i}\right) \rightarrow \infty$, as $i \rightarrow \infty$. Then, we let $F_{t}(x)=t c^{\top} x+F(x)$. The central path is defined as: $x_{*}(t)=\operatorname{argmin}_{x} F_{t}(x)$. This transforms the constrained problem to the unconstrained problem.

To solve IP in practice, there are two feasible ways:

1. Solve $x_{\star}(t)$ for large t directly.
2. Start from $x_{*}(0)$, iteratively increase t to approach $x_{*}(t)$, i.e., path-following algorithm in Lec 18 .

2 Canonical Barrier (CB)

Consider the problem $\min \left\{c^{\top} x: A x-B \in \mathbb{K}\right\}$, where

$$
\begin{equation*}
\mathbb{K}=\mathbb{S}_{+}^{k_{1}} \times \mathbb{S}_{+}^{k_{2}} \times \cdots \times \mathbb{S}_{+}^{k_{p}} \times \mathbb{L}^{k_{p+1}} \times \cdots \times \mathbb{L}^{k_{m}} \subset E=\mathbb{S}^{k_{1}} \times \mathbb{S}^{k_{2}} \times \cdots \times \mathbb{S}^{k_{p}} \times \mathbb{R}^{k_{p+1}} \times \cdots \times \mathbb{R}^{k_{m}} \tag{1}
\end{equation*}
$$

The set $\mathbb{S}_{+}^{k}=\left\{X \in \mathbb{S}^{k} \mid X \geq 0\right\}$ and $\mathbb{L}^{k}=\left\{X \in \mathbb{R}^{k} \mid X_{k} \geq \sqrt{X_{1}^{2}+\cdots+X_{k-1}^{2}}\right\}$ refer to the semi-definite cone and Lorentz cone respectively. We remark that the inner product associated with these two cones are defined as: $\left\langle X_{i}, Y_{i}\right\rangle_{\mathbb{S}^{k}}=\operatorname{Tr}\left(X_{i} Y_{i}\right),\left\langle X_{i}, Y_{i}\right\rangle_{\mathbb{R}^{k}}=X_{i}^{\top} Y_{i}$, and therefore $\langle X, Y\rangle_{E}=\sum_{i=1}^{p} \operatorname{Tr}\left(X_{i} Y_{i}\right)+\sum_{i=p+1}^{m} X_{i}^{\top} Y_{i}$. To find a proper barrier for the cone defined in $\mathbb{1}$, it suffices to consider the canonical barriers for \mathbb{S}_{+}^{k} and \mathbb{L}^{k} first.

- The canonical barrier for semi-definite cones is defined as $S_{k}(X)=-\ln \operatorname{det}(X)$. The parameter of logarithmic homogeneity of $S_{k}(X)$ is $\theta\left(S_{k}\right)=k$, i.e., $S_{k}(t X)=S_{k}(X)-\theta\left(S_{k}\right) \ln t=S_{k}(X)-k \ln t$.
- The canonical barrier for Lorentz cones is defined as $L_{k}(X)=-\ln \left(X_{k}^{2}-X_{1}^{2}-\cdots-X_{k-1}^{2}\right)=-\ln \left(X^{\top} J_{k} X\right)$, where $J_{k}=\left(\begin{array}{cc}-I_{k-1} & \\ & 1\end{array}\right)$. The parameter of logarithmic homogeneity associated with $L_{k}(X)$ is $\theta\left(L_{k}\right)=2$.

Therefore, for $X \in \mathbb{K}$, define $K(X)=S_{k_{1}}\left(X_{1}\right)+\cdots+S_{k_{p}}\left(X_{p}\right)+L_{k_{p+1}}\left(X_{p+1}\right)+\cdots+L_{k_{m}}\left(X_{m}\right)$. Then, $K(X)$ is the canonical barrier for \mathbb{K} with parameter $\theta(K)=\sum_{i \leq p} \theta\left(S_{k_{i}}\right)+\sum_{i=p+1}^{m} \theta\left(L_{k_{i}}\right)=\sum_{i=1}^{p} k_{i}+2(m-p)$.
Theorem 1 (Properties of CB, Prop 4.3.1 in [1]). The barrier function $K(X)=S_{k_{1}}\left(X_{1}\right)+\cdots+S_{k_{p}}\left(X_{p}\right)+$ $L_{k_{p+1}}\left(X_{p+1}\right)+\cdots+L_{k_{m}}\left(X_{m}\right)=\sum_{i=1}^{p}-\ln \operatorname{det}\left(X_{i}\right)+\sum_{j=p+1}^{m}-\ln \left(X_{j}^{\top} J_{k_{j}} X_{j}\right)$ satisfies:

1. Barrier property: $K(\cdot)$ is C^{∞} strongly convex function, such that $X^{i} \in \operatorname{int}(\mathbb{L}), \lim X^{i}=X \in \partial \mathbb{K} \Rightarrow$ $K\left(X^{i}\right) \rightarrow \infty$ as $i \rightarrow \infty$.
2. Logarithmically homogeneity: $X \in \operatorname{int}(\mathbb{K}), t>0 \Rightarrow K(t X)=K(X)-\theta(K) \ln t$.
3. Self-duality: the mapping $X \rightarrow-\nabla K(X)$ is a one-to-one mapping from $\operatorname{int}(\mathbb{K})$ onto int (\mathbb{K}), i.e., $X \in \operatorname{int} \mathbb{K}, S=-\nabla K(X) \Leftrightarrow S \in \operatorname{int}(\mathbb{K}), X=-\nabla K(S)$.

3 Primal-Dual Pair and Geometric Form

Consider a conic programming

$$
\begin{align*}
& \text { Conic Primal (CP) } \quad \min _{x}\left\{c^{\top} x: A x-B \in \mathbb{K}\right\} \tag{2}\\
& \text { Conic Dual }(\mathrm{CD}) \quad \max _{S}\left\{\langle B, S\rangle_{E}: A^{*} S=c, S \in \mathbb{K}\right\}
\end{align*}
$$

where $A^{*}:\langle X, A x\rangle_{E} \equiv x^{\top} A^{*} X$.
The above CP and CD can be reformulated in geometric form (cf. Section 1.4.4 in [1])

$$
\begin{align*}
& \text { Primal (P) } \quad \min _{X}\left\{\langle C, X\rangle_{E}: X \in(\mathcal{L}-B) \cap \mathbb{K}\right\} \\
& \text { Dual (D) } \quad \max _{S}\left\{\langle B, S\rangle_{E}: S \in\left(\mathcal{L}^{\perp}+C\right) \cap \mathbb{K}\right\} \tag{3}
\end{align*}
$$

where $\mathcal{L}=\operatorname{Im} A \equiv\{A x\}$ and \mathcal{L}^{\perp} is the orthogonal complement of \mathcal{L}. Assume for simplicity that $\operatorname{Ker} A=\{0\}$, (P) and (D) are strictly feasible.

4 Primal-Dual Central Path

Path for (CP):

$$
\begin{equation*}
x_{\star}(t)=\operatorname{argmin}_{x}\left[c^{\top} x+\frac{1}{t} K(A x-B)\right] . \tag{4}
\end{equation*}
$$

Path for (P):

$$
\begin{align*}
X_{*}(t) & =A x_{*}(t)-B \\
& =\operatorname{argmin}_{X \in(\mathcal{L}-B) \operatorname{int}(\mathbb{K})}\langle C, X\rangle+\frac{1}{t} K(X) . \tag{5}
\end{align*}
$$

Path for (D):

$$
\begin{equation*}
S_{*}(t)=\operatorname{argmin}_{S \epsilon\left(L^{+}+c\right) \cap \operatorname{int} \mathbb{K}}-t\langle B, S\rangle+K(S) \tag{6}
\end{equation*}
$$

Theorem 2 (Thm 4.4.1, 4.4.2 in [1]). For every $t>0$,

$$
\begin{align*}
& S_{*}(t)=-t^{-1} \nabla K\left(X_{*}(t)\right), \tag{7}\\
& X_{*}(t)=-t^{-1} \nabla K\left(S_{*}(t)\right) .
\end{align*}
$$

$X_{*}(t)$ is fully characterized by 2 properties:

1. $X_{*}(t)$ is strictly primal feasible.
2. $-t^{-1} \nabla K\left(X_{*}(t)\right)$ is strictly dual feasible.
$S_{*}(t)$ is fully characterized by 2 properties:
3. $S_{*}(t)$ is strictly dual feasible.
4. $-t^{-1} \nabla K\left(S_{*}(t)\right)$ is strictly primal feasible.

Characterization of central path $\left(X_{*}(t), S_{*}(t)\right)$:

1. Primal feasibility: $X_{*}(t)$ strictly primal feasible.
2. Dual feasibility: $S_{\star}(t)$ strictly dual feasible.
3. Augmented Complementary Slackness (ACS):

$$
\begin{equation*}
S_{*}(t)+t^{-1} \nabla K\left(X_{*}(t)\right)=0 \tag{8}
\end{equation*}
$$

Proposition 3 (Prop 4.4.1 in [1]). It holds that: Duality Gap $\left(X_{*}(t), S_{*}(t)\right)=t^{-1} \theta(K)$.
Remark: This proposition is similar to Theorem 1 in Lec 18.

5 Distance to Central Path

We use the metric $\|H\|_{Y}=\sqrt{\left\langle\left[\nabla^{2} K(Y)\right]^{-1} H, H\right\rangle}$. Given $Z=(X, S), Z_{*}(t)=\left(X_{\star}(t), S_{\star}(t)\right)$, we define there distance as

$$
\begin{equation*}
\operatorname{dist}\left(z, Z_{*}(t)\right) \triangleq\|t \cdot S+\nabla K(X)\|_{X}=\sqrt{\left\langle\left[\nabla^{2} K(X)\right]^{-1}(t S+\nabla K(X)), t S+\nabla K(X)\right\rangle} \tag{9}
\end{equation*}
$$

Proposition 4 (Properties of $\operatorname{dist}(\cdot, \cdot)$, Page 283 of [1]). The followings hold:

1. $\operatorname{dist}\left(Z, Z_{*}(t)\right)=0$ iff $S=-t^{-1} \nabla K(X)$, which implies $Z=Z_{*}(t)$.
2. $\operatorname{dist}\left(Z, Z_{*}(t)\right) \leq 1 \Rightarrow$ Duality $G a p(X, S) \leq 2 \theta(K) / t$.

6 Tracing the Central Path

Given $(\bar{t}, \bar{X}, \bar{S})$ such that $\bar{X} \in \mathcal{L}-B, \bar{S} \in \mathcal{L}^{+}+C$ and satisfies the system of nonlinear equations $G_{\bar{t}}(\bar{X}, \bar{S}):=$ $\bar{S}+\bar{t}^{-1} \nabla K(\bar{X})=0$, we want to find another tuple $\left(t_{+}, X_{+}, S_{+}\right)$such that $t_{+}>\bar{t}, X_{+} \in \mathscr{L}-B, S_{+} \in \mathcal{L}^{+}+C$, and $G_{t_{+}}\left(X_{t}, S_{t}\right)=S_{+}+t_{+}^{-1} \nabla K\left(X_{+}\right)=0$. The idea to find such a tuple is the following:

- Find $t_{+}>\bar{t}$.
- Linearize $G_{t_{+}}(X, S)$ at (\bar{X}, \bar{S}).
- Solving the system

$$
\left\{\begin{array}{l}
G_{t_{+}}(X, S)+\frac{\partial G_{t_{+}}(\bar{X}, \bar{X})}{\partial X}(\bar{X}-\bar{X})+\frac{\partial G_{t_{+}}(\bar{X}, \bar{S})}{\partial S}(S-\bar{S})=0 \tag{10}\\
\Delta X=X-\bar{X} \in \mathcal{L} \\
\Delta S=S-\bar{S} \in \mathcal{L}^{\perp}
\end{array}\right.
$$

which is equivalent to

$$
\left\{\begin{array}{l}
A^{*}\left[\nabla^{2} K(\bar{X})\right] A \Delta X=-\left[t_{+} c+A^{*} \nabla K(\bar{X})\right] \tag{11}\\
\Delta X=A \Delta X \\
A^{*} \Delta=0
\end{array}\right.
$$

Upon solving the equation, let $\left(X_{+}, S_{+}\right)=(\bar{X}+\Delta X, \bar{S}+\Delta S)$.
We remark that, $x_{+}=\bar{x}-\left[\nabla^{2} F_{t_{+}}(x)\right]^{-1} \nabla F_{t_{+}}(x)$, where $F_{t_{t}}(x)=t c^{\top} x+K(A x-B)$. The process described above is purely primal.

$7 \quad$ Special Example: IP for SDP

For the special case of semi-definite programs, consider the system of equation $G_{t}(X, S)$ as defined in Section 6.

$$
\begin{equation*}
G_{t}(X, S) \equiv S+t^{-1} \nabla K(X)=S-t^{-1} X^{-1}=0 \tag{12}
\end{equation*}
$$

Multiplying both sides by X and rearranging terms, we obtain

$$
\begin{equation*}
X S=t^{-1} I, \quad S X=t^{-1} I \Rightarrow X S+S X=2 t^{-1} I \tag{13}
\end{equation*}
$$

Then, we apply Q-scaling. For every $Q>0$, consider $\tilde{X}=Q X Q, \tilde{S}=Q^{-1} S Q^{-1}$. With some rearrangements, we get

$$
\begin{equation*}
Q^{-1} S X Q=t^{-1} I, \quad Q X S Q^{-1}=t^{-1} I \Rightarrow Q X S Q^{-1}+Q^{-1} S X Q=2 t^{-1} I \Leftrightarrow \tilde{X} \tilde{S}+\tilde{S} \tilde{X}=2 t^{-1} I \tag{14}
\end{equation*}
$$

Remark We make the following remarks:

1. Q-scaling: $X \rightarrow Q X Q$ is one-to-one mapping from cone to itself.
2. Q is flexible as it is iteration-dependent. For $\forall \Delta X \in \mathcal{L}$ and $\Delta S \in \mathcal{L}^{\perp}$, we have

$$
\begin{equation*}
Q_{i}\left[\Delta X S_{i}+X_{i} \Delta S\right] Q_{i}^{-1}+Q_{i}^{-1}\left[\mathrm{~S}_{\mathrm{i}} \Delta X+\Delta S X_{i}\right] Q_{i}=2 t_{i+1}^{-1} I-Q_{i} X_{i} S_{i} Q_{i}^{-1}-Q_{i}^{-1} S_{i} X_{i} Q_{i} \tag{15}
\end{equation*}
$$

3. Popular choice of Q :

- Alizadeh-Haeberly-Overton method: $Q_{i}=I$.
- XS-method: $Q_{i}=S_{i}^{\frac{1}{2}} \quad \Rightarrow \quad S_{i}^{\frac{1}{2}} X_{i} S_{i}^{\frac{1}{2}}=t^{-1} I$.
- SX-method: $Q_{i}=X_{i}^{-\frac{1}{2}} \quad \Rightarrow \quad X_{i}^{\frac{1}{2}} S_{i} X_{i}^{\frac{1}{2}}=t^{-1} I$.
- Nesterov-Todd: $Q_{i}=\left(X_{i}^{-\frac{1}{2}}\left(X_{i}^{\frac{1}{2}} S_{i} X_{i}^{\frac{1}{2}}\right)^{-\frac{1}{2}} X_{i}^{\frac{1}{2}} S_{i}\right)^{\frac{1}{2}} \Rightarrow \tilde{S}=\tilde{X}$.

References

[1] A. Ben-Tal and A. Nemirovski, Lectures on modern convex optimization: analysis, algorithms, and engineering applications. SIAM, 2001.

