EECS 227C Convex Optimization and Approximation	Lecture 19-3/29/2022
Lecture 19: Potential Reduction Interior Point Method	
Lecturer: Yanjun Han	Scribe: Homer Walke, Gaofeng Su

In this lecture we cover conic duality, Karmarkar's algorithm, and the primal-dual potential reduction algorithm. They are based on [1, Chapter 5-7].

1 Conic Duality

First we define a conic program.

$$
\begin{array}{ll}
\text { Conic Program } \\
\text { min } & c^{T} x \\
\text { s.t. } & x \in K \cap\{b+L\}
\end{array}
$$

where K is a convex cone $(x \in K, t \geq 0 \Rightarrow t x \in K)$. Some examples of convex cones include: $K=\mathbb{R}_{+}^{n}$, $K=\left\{x \in \mathbb{R}^{n} \mid x_{n}^{2} \geq x_{1}^{2}, \ldots, x_{n-1}^{2}\right\}$, and $K=\left\{x \in \mathbb{R}^{n \times m} \mid x \succeq 0\right\}$.

Note that general convex programming can be represented as conic programming.

\[

\]

We can also define a dual conic program.

Primal Problem
 $$
\min \quad c^{T} x
$$
 $$
\text { s.t. } \quad x \in K \cap\{b+L\}
$$

Dual Problem

$$
\max \quad b^{T} y
$$

$$
\text { s.t. } \quad y \in K^{*} \cap\left\{c+L^{\perp}\right\}
$$

Here, K^{*} is the dual cone of K. The dual cone is defined as $K^{*}=\left\{y \in \mathbb{R}^{n} \mid\langle x, y\rangle \geq 0 \forall x \in K\right\}$. There are two versions of duality, weak and strong.
Weak Duality: For feasible (x, y), then

$$
c^{T} x+b^{T} y-c^{T} b=-(x-b)^{T}(y-c)+x^{T} y=x^{T} y \geq 0
$$

Strong Duality: If the primal problem is strongly feasible and lower bounded, then the dual problem is solvable. Moreover,

$$
P^{*}+D^{*}-c^{T} b=0
$$

1.1 Log-homogeneous barrier

Definition 1 (Log-homogeneous barrier). F is a θ-logarithmically homogeneous self-concordant barrier for K if and only if F is a self-concordant barrier for K and $F(t x)=F(x)-\theta \log t$.
Proposition 2. We claim $\nabla F(x)=-\nabla^{2} F(x) x$ and $x^{T} \nabla^{2} F(x) x \equiv \theta$ and F is θ-self-concordant.

Proof Note that

$$
\nabla F(t x)=t^{-1} \nabla F(x)
$$

Taking the derivative of this expression with respect to t and setting $t=1$, we have

$$
\nabla^{2} F(x) x=-\nabla F(x)
$$

Then taking the derivative of $F(t x)=F(x)-\theta \log t$ with respect to t and setting $t=1$, we have

$$
-\theta=\nabla F(x)^{T} x=-x^{T} \nabla^{2} F(x) x
$$

Lastly we have

$$
|\langle\nabla F(x), h\rangle|=\left|h^{T} \nabla^{2} F(x) x\right| \leq\|x\|_{x}^{1 / 2}\|h\|_{2}^{1 / 2}=\sqrt{\theta} \sqrt{h^{T} \nabla F(x) h}
$$

Proposition 3. We claim that $F^{*}(y)=F^{*}(-y)=\sup _{x \in K}\left(-x^{T} y-F(x)\right)$ is a θ-logarithmically homogeneous self-concordant barrier for K^{*}. Also,

Moreover,

$$
F(x)+F^{*}(-y)+\theta \log \left(x^{T} y\right) \geq \theta \log \theta-\theta
$$

with equality if and only if $y=-t \nabla F(x)$ for some $t \geq 0$.
Here we prove the last part of the proposition.
Proof First we show the \Leftarrow direction. If $y=-t \nabla F(x)$, then $x^{T} y=-t \nabla F(x)^{T} x=t \theta$. So

$$
\begin{aligned}
F(x)+F^{*}(-y)+\theta \log \left(x^{T} y\right) & =F(x)+F^{*}(\nabla F(x))-\theta \log t+\theta \log (t \theta) \\
& =\theta \log \theta+\nabla F(x)^{T} x=\theta \log \theta-\theta
\end{aligned}
$$

Now we show the \Rightarrow direction. Minimize $F(z)$ over $\left\{x^{T} y=z^{T} y\right\}$ then $\nabla F(x)=-t y$ with $t \geq 0$. and the objective value is $\theta \log \theta-\theta$.

2 Karmarkar's Algorithm

We want to solve the primal problem:

$$
\begin{array}{ll}
\min & c^{T} x \\
\text { s.t. } & x \in K \cap \mathrm{E}, \quad e^{T} x=1
\end{array}
$$

We make the following assumptions:

1. The feasible set is bounded.
2. There is a known feasible solution.
3. There is a known barrier F.
4. There is a known optimal objective value c^{*}.

Under these assumptions the following problem has objective value 0 .

$$
\begin{array}{ll}
\min & \left(c-c^{*} e\right)^{T} x \triangleq r^{T} x \\
\text { s.t. } & x \in K \cap L, \quad e^{T} x=1
\end{array}
$$

The idea of the algorithm is to minimize the Karmarkar potential:

$$
v(x)=F(x)+\theta \log \left(\sigma^{T} x\right) \quad \text { s.t. } x \in L
$$

Note that $v(t x)=v(x)$. We know that

$$
v(x) \leq-A \Rightarrow \sigma^{T} x \leq C e^{-A / \theta}
$$

The algorithm has the following steps:

1. $v(x) \leq v_{x_{t}}(x)=F(x)+\theta \frac{\sigma^{T} x}{\sigma^{T} x_{t}}-\theta+\theta \log \left(\sigma^{T} x_{t}\right)$
2. Then we caculate the Newton direction:

$$
\begin{aligned}
e_{t} & =\arg \min _{h} h^{T} \nabla v_{x_{t}}\left(x_{t}\right)+\frac{1}{2} h^{T} \nabla^{2} v_{x_{t}}\left(x_{t}\right) h \\
\text { s.t. } & h \in \mathrm{£}, \quad h^{T} \nabla F\left(x_{t}\right)=0 .
\end{aligned}
$$

3. Then we use the damped Newton method:

$$
x^{\prime}=x_{t}+\frac{1}{1+w} e_{t} \quad w=\sqrt{-e_{t}^{T} \nabla v_{x_{t}}\left(x_{t}\right)}
$$

4. Set $x^{\prime \prime}$ to be any $v\left(x^{\prime \prime}\right) \leq v\left(x^{\prime}\right)$ and $x_{t+1}=\frac{x^{\prime \prime}}{e^{T} x^{\prime \prime}}$

Theorem 4. $v\left(x_{T}\right)-v\left(x_{t+1}\right) \geq \frac{1}{3}-\log \frac{4}{3} \geq 0$

Analysis:

$$
\begin{aligned}
v\left(x_{T}\right)-v\left(x_{t+1}\right) & =v\left(x_{T}\right)-v\left(x^{\prime \prime}\right) \\
& \geq v\left(x_{t}\right)-v\left(x^{\prime}\right) \\
& \geq v_{x_{t}}\left(x_{t}\right)-v_{x_{t}}\left(x^{\prime}\right) \\
& \geq w-\log (1+w)
\end{aligned}
$$

It then suffices to prove that the Newton decrement $w \geq \frac{1}{3}$.
Why do we use potential reduction? While the objective is the same, we can make much greater progress in practice.

What if we don't know c^{*} ? First find a lower bound $c_{t} \leq c^{*}$. Then run the procedure with c_{t}.

1. If $w_{t} \geq \frac{1}{3}$, continue.
2. If $w_{t}<\frac{1}{3}$, find (using grid search) the smallest $c_{t+1}>c_{t}$ such that $w_{t} \geq \frac{1}{3}$ with c_{t+1}. Start using c_{t+1} and continue.

3 Primal-dual Potential Reduction Algorithm

Given the primal and dual problem setup as follows:

Primal Problem

$\min c^{T} x$
s.t. $\quad x \in K \cap\{b+L\}$

Dual Problem
$\max \quad b^{T} y$
s.t. $\quad y \in K^{*} \cap\left\{c+L^{\perp}\right\}$

The idea of primal-dual potential reduction algorithm is to minimize the potential function:

$$
v(x, y)=F(x)+F^{+}(y)+(\theta+\mu) \log \left(x^{T} y\right)
$$

Because,

$$
\text { if } \quad v(x, y) \leq-A \Rightarrow x^{T} y \leq \exp \left(\frac{-A+\theta(\log \theta-1)}{\mu}\right)
$$

note: $F(x)+F^{+}(y)+\mu \log \left(x^{T} y\right) \geq \theta \log \theta-\theta($ see Prop 3$)$

3.1 Algorithm Idea

The first idea is called primal update, where we fix y_{t} and locally linearize $v\left(x, y_{t}\right)$ around $x=x_{t}$,

$$
v\left(x, y_{t}\right) \leq v_{t}(x)=F(x)+(\theta+\mu) \frac{x^{T} y_{t}}{x_{t}^{T} y_{t}}+\operatorname{const}\left(y_{t}\right)
$$

and let

$$
\begin{aligned}
e_{t}= & \arg \min _{h} h^{T} \nabla v_{t}\left(x_{t}\right)+\frac{1}{2} h^{T} \nabla^{2} v_{t}\left(x_{t}\right) h \\
& \text { s.t. } h \in L
\end{aligned}
$$

Then the updating rule is:

$$
\begin{aligned}
& w_{t}=\sqrt{-e_{t}^{T} \nabla v_{t}\left(x_{t}\right)} \\
& x_{t+1}=x_{t}+\frac{1}{1+w_{t}} e_{t}
\end{aligned}
$$

Analysis:

$$
v\left(x_{t+1}, y_{t}\right)-v\left(x_{t}, y_{t}\right) \leq \log \left(1+w_{t}\right)-w_{t} \leq 0
$$

Problem: $\quad w_{t}$ could be small (or even 0), which means we are making small (or even zero) progress. Fix: when w_{t} is small, we can make great progress for the dual update, which we will define later. Idea: suppose that $w_{t}=0$, then

$$
\nabla v_{t}\left(x_{t}\right)=\nabla F\left(x_{t}\right)+(\theta+\mu) \frac{y_{t}}{x_{t}^{T} y_{t}} \in L^{\perp} \Leftrightarrow-\frac{x_{t}^{T} y_{t}}{\theta+\mu} \nabla F\left(x_{t}\right) \in y_{t}+L^{\perp}=c+L^{\perp}
$$

Try

$$
y_{t+1}=-\frac{x_{t}^{T} y_{t}}{\theta+\mu} \nabla F\left(x_{t}\right)
$$

then

$$
\begin{aligned}
v\left(x_{t}, y_{t}\right)-v\left(x_{t}, y_{t+1}\right)= & \underbrace{\left(F\left(x_{t}\right)+F^{+}\left(y_{t}\right)+\theta \log \left(x_{t}^{T} y_{t}\right)\right)-\left(F\left(x_{t}\right)+F^{+}\left(y_{t+1}\right)+\theta \log \left(x_{t}^{T} y_{t+1}\right)\right)}_{\geq 0} \\
& \left.\left.+\mu \log \left(x_{t}^{T} y_{t}\right)\right)-\mu \log \left(x_{t}^{T} y_{t+1}\right)\right) \\
\geq & \mu \log \left(\frac{\theta+\mu}{-\nabla F\left(x_{t}\right)^{T} x_{t}}\right)=\mu \log \left(1+\frac{\theta}{\mu}\right)
\end{aligned}
$$

Dual update:

$$
y_{t+1}=-\frac{x_{t}^{T} y_{t}}{\theta+\mu}\left(\nabla F\left(x_{t}\right)+\nabla^{2} F\left(x_{t}\right) e_{t}\right)
$$

Theorem 5. Given $y_{t+1} \in c+L^{\perp}$, if $w_{t}<1$ and $y_{t+1} \in K^{*}$, then $v\left(x_{t}, y_{t}\right)-v\left(x_{t}, y_{t+1}\right) \geq \mu \log \frac{\theta+\mu}{\theta+w_{t} \sqrt{\theta}}+$ $w_{t}+\log \left(1-w_{t}\right)$

Analysis:

$$
\text { defn. of } e_{t} \Rightarrow \nabla F\left(x_{t}\right)+\frac{\theta+\mu}{x_{t}^{T} y_{t}} y_{t}+\nabla^{2} F\left(x_{t}\right) e_{t} \in L^{\perp} \Rightarrow y_{t+1}-y_{t} \in L^{\perp} \Rightarrow y_{t+1} \in c+L^{\perp}
$$

Choose $\mu \sqrt{\theta}$ to guarantee constant progress, and the number of iteration $\leq \tilde{O}\left(\sqrt{\theta} \log \frac{1}{\epsilon}\right)$

3.2 Primal-dual potential-reduction algorithm

1. start from feasible solution $\left(x_{p}, y_{p}\right)$
2. at $t^{t h}$ iteration, run primal update $\rightarrow\left(x_{t+1}, y_{t}\right)$ and dual update $\rightarrow\left(x_{t}, y_{t+1}\right)$
3. if y_{t+1} is not strictly dual feasible, choose $\left(x_{t+1}, y_{t}\right)$, otherwise choose the one with smaller $v(x, y)$

References

[1] A. Nemirovski, "Interior point polynomial methods in convex programming," https://www2.isye.gatech. edu/~nemirovs/Lect_IPM.pdf, accessed: 2022-04-05.

