
EECS 227C Convex Optimization and Approximation Lecture 19 - 3/29/2022

Lecture 19: Potential Reduction Interior Point Method
Lecturer: Yanjun Han Scribe: Homer Walke, Gaofeng Su

In this lecture we cover conic duality, Karmarkar’s algorithm, and the primal-dual potential reduction algo-
rithm. They are based on [1, Chapter 5-7].

1 Conic Duality

First we define a conic program.

Conic Program

min cTx

s.t. x ∈ K ∩ {b + L}

where K is a convex cone (x ∈ K, t ≥ 0 ⇒ tx ∈ K). Some examples of convex cones include: K = Rn
+,

K = {x ∈ Rn | x2
n ≥ x2

1, . . . , x
2
n−1}, and K = {x ∈ Rn×m | x ⪰ 0}.

Note that general convex programming can be represented as conic programming.

Convex Program Conic Program

min cTx = max (c, 0)T (x, t)

s.t. x ∈ G s.t. (x, t) ∈ {t > 0, t−1x ∈ G}, t = 1

We can also define a dual conic program.

Primal Problem Dual Problem

min cTx max bT y

s.t. x ∈ K ∩ {b + L} s.t. y ∈ K∗ ∩ {c + L⊥}

Here, K∗ is the dual cone of K. The dual cone is defined as K∗ = {y ∈ Rn | ⟨x, y⟩ ≥ 0 ∀x ∈ K}. There are
two versions of duality, weak and strong.
Weak Duality: For feasible (x, y), then

cTx + bT y − cT b = −(x− b)T (y − c) + xT y = xT y ≥ 0.

Strong Duality: If the primal problem is strongly feasible and lower bounded, then the dual problem is
solvable. Moreover,

P ∗ + D∗ − cT b = 0

1.1 Log-homogeneous barrier

Definition 1 (Log-homogeneous barrier). F is a θ-logarithmically homogeneous self-concordant barrier for
K if and only if F is a self-concordant barrier for K and F (tx) = F (x) − θ log t.

Proposition 2. We claim ∇F (x) = −∇2F (x)x and xT∇2F (x)x ≡ θ and F is θ-self-concordant.

1

Proof Note that
∇F (tx) = t−1∇F (x)

Taking the derivative of this expression with respect to t and setting t = 1, we have

∇2F (x)x = −∇F (x)

Then taking the derivative of F (tx) = F (x) − θ log t with respect to t and setting t = 1, we have

−θ = ∇F (x)Tx = −xT∇2F (x)x

Lastly we have

|⟨∇F (x), h⟩| = |hT∇2F (x)x| ≤ ||x||1/2x ||h||1/22 =
√
θ
√

hT∇F (x)h

Proposition 3. We claim that F ∗(y) = F ∗(−y) = supx∈K(−xT y−F (x)) is a θ-logarithmically homogeneous
self-concordant barrier for K∗.
Also,

int K int K∗

−∇ F

−∇ F ∗

Moreover,
F (x) + F ∗(−y) + θ log(xT y) ≥ θ log θ − θ

with equality if and only if y = −t∇F (x) for some t ≥ 0.

Here we prove the last part of the proposition.
Proof First we show the ⇐ direction. If y = −t∇F (x), then xT y = −t∇F (x)Tx = tθ. So

F (x) + F ∗(−y) + θ log(xT y) = F (x) + F ∗(∇F (x)) − θ log t + θ log(tθ)

= θ log θ + ∇F (x)Tx = θ log θ − θ

Now we show the ⇒ direction. Minimize F (z) over {xT y = zT y} then ∇F (x) = −ty with t ≥ 0. and the
objective value is θ log θ − θ.

2 Karmarkar’s Algorithm

We want to solve the primal problem:

min cTx

s.t. x ∈ K ∩ L, eTx = 1.

We make the following assumptions:

2

1. The feasible set is bounded.

2. There is a known feasible solution.

3. There is a known barrier F .

4. There is a known optimal objective value c∗.

Under these assumptions the following problem has objective value 0.

min (c− c∗e)Tx ≜ rTx

s.t. x ∈ K ∩ L, eTx = 1.

The idea of the algorithm is to minimize the Karmarkar potential:

v(x) = F (x) + θ log(σTx) s.t. x ∈ L

Note that v(tx) = v(x). We know that

v(x) ≤ −A ⇒ σTx ≤ Ce−A/θ

The algorithm has the following steps:

1. v(x) ≤ vxt
(x) = F (x) + θ σT x

σT xt
− θ + θ log(σTxt)

2. Then we caculate the Newton direction:

et = arg min
h

hT∇vxt(xt) +
1

2
hT∇2vxt(xt)h

s.t. h ∈ L, hT∇F (xt) = 0.

3. Then we use the damped Newton method:

x′ = xt +
1

1 + w
et w =

√
−eTt ∇vxt

(xt)

4. Set x′′ to be any v(x′′) ≤ v(x′) and xt+1 = x′′

eT x′′

Theorem 4. v(xT) − v(xt+1) ≥ 1
3 − log 4

3 ≥ 0

Analysis:

v(xT) − v(xt+1) = v(xT) − v(x′′)

≥ v(xt) − v(x′)

≥ vxt(xt) − vxt(x
′)

≥ w − log(1 + w)

It then suffices to prove that the Newton decrement w ≥ 1
3 .

Why do we use potential reduction? While the objective is the same, we can make much greater
progress in practice.

What if we don’t know c∗? First find a lower bound ct ≤ c∗. Then run the procedure with ct.

1. If wt ≥ 1
3 , continue.

2. If wt <
1
3 , find (using grid search) the smallest ct+1 > ct such that wt ≥ 1

3 with ct+1. Start using ct+1

and continue.

3

3 Primal-dual Potential Reduction Algorithm

Given the primal and dual problem setup as follows:

Primal Problem Dual Problem

min cTx max bT y

s.t. x ∈ K ∩ {b + L} s.t. y ∈ K∗ ∩ {c + L⊥}

The idea of primal-dual potential reduction algorithm is to minimize the potential function:

v(x, y) = F (x) + F+(y) + (θ + µ) log(xT y)

Because,

if v(x, y) ≤ −A ⇒ xT y ≤ exp(
−A + θ(log θ − 1)

µ
)

note: F (x) + F+(y) + µ log(xT y) ≥ θ log θ − θ (see Prop 3)

3.1 Algorithm Idea

The first idea is called primal update, where we fix yt and locally linearize v(x, yt) around x = xt,

v(x, yt) ≤ vt(x) = F (x) + (θ + µ)
xT yt
xT
t yt

+ const(yt)

and let

et = arg min
h

hT∇vt(xt) +
1

2
hT∇2vt(xt)h

s.t. h ∈ L

Then the updating rule is:

wt =
√
−eTt ∇vt(xt)

xt+1 = xt +
1

1 + wt
et

Analysis:

v(xt+1, yt) − v(xt, yt) ≤ log(1 + wt) − wt ≤ 0

Problem: wt could be small (or even 0), which means we are making small (or even zero) progress.
Fix: when wt is small, we can make great progress for the dual update, which we will define later.
Idea: suppose that wt = 0, then

∇vt(xt) = ∇F (xt) + (θ + µ)
yt

xT
t yt

∈ L⊥ ⇔ − xT
t yt

θ + µ
∇F (xt) ∈ yt + L⊥ = c + L⊥

Try

yt+1 = − xT
t yt

θ + µ
∇F (xt)

4

then

v(xt, yt) − v(xt, yt+1) = (F (xt) + F+(yt) + θ log(xT
t yt)) − (F (xt) + F+(yt+1) + θ log(xT

t yt+1))︸ ︷︷ ︸
≥0

+ µ log(xT
t yt)) − µ log(xT

t yt+1))

≥µ log(
θ + µ

−∇F (xt)Txt
) = µ log(1 +

θ

µ
)

Dual update:

yt+1 = − xT
t yt

θ + µ
(∇F (xt) + ∇2F (xt)et)

Theorem 5. Given yt+1 ∈ c + L⊥, if wt < 1 and yt+1 ∈ K∗, then v(xt, yt) − v(xt, yt+1) ≥ µ log θ+µ

θ+wt

√
θ

+

wt + log(1 − wt)

Analysis:

defn. of et ⇒ ∇F (xt) +
θ + µ

xT
t yt

yt + ∇2F (xt)et ∈ L⊥ ⇒ yt+1 − yt ∈ L⊥ ⇒ yt+1 ∈ c + L⊥

Choose µ
√
θ to guarantee constant progress, and the number of iteration ≤ Õ(

√
θ log 1

ϵ)

3.2 Primal-dual potential-reduction algorithm

1. start from feasible solution (xp, yp)

2. at tth iteration, run primal update → (xt+1, yt) and dual update → (xt, yt+1)

3. if yt+1 is not strictly dual feasible, choose (xt+1, yt), otherwise choose the one with smaller v(x, y)

References

[1] A. Nemirovski, “Interior point polynomial methods in convex programming,” https://www2.isye.gatech.
edu/∼nemirovs/Lect IPM.pdf, accessed: 2022-04-05.

5

