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Lecture 19: Potential Reduction Interior Point Method
Lecturer: Yanjun Han Scribe: Homer Walke, Gaofeng Su

In this lecture we cover conic duality, Karmarkar’s algorithm, and the primal-dual potential reduction algo-
rithm. They are based on [1, Chapter 5-7].

1 Conic Duality

First we define a conic program.

Conic Program

min ¢’ x

st. ze Kn{b+ L}

where K is a convex cone (z € K,t > 0 = tx € K). Some examples of convex cones include: K = R,
K={zeR"|22>22...,22_,},and K = {x € R™"™ |z = 0}.

Note that general convex programming can be represented as conic programming.

Convex Program Conic Program
min ¢’z = max (¢, 0)7 (z,t)
st. xeqG st. (z,t)e{t>0,t"treG}t=1

We can also define a dual conic program.

Primal Problem Dual Problem
min ¢z max bTy
st. re Kn{b+L} st. ye K*n{c+ L}

Here, K* is the dual cone of K. The dual cone is defined as K* = {y € R™ | (x,y) > 0 Vo € K}. There are
two versions of duality, weak and strong.
Weak Duality: For feasible (z,y), then

Tr+vTy—clv=—(z-b)T(y—c)+aTy=a2"Ty>0.

Strong Duality: If the primal problem is strongly feasible and lower bounded, then the dual problem is
solvable. Moreover,

P*+D*—c'b=0
1.1 Log-homogeneous barrier

Definition 1 (Log-homogeneous barrier). F is a 0-logarithmically homogeneous self-concordant barrier for
K if and only if F is a self-concordant barrier for K and F(tx) = F(x) — 0logt.

Proposition 2. We claim VF(z) = —V2F(z)x and 2TV?F(z)x = 6 and F is §-self-concordant.



Proof Note that
VF(tz) =t 'VF(z)

Taking the derivative of this expression with respect to t and setting t = 1, we have
V2F(2)x = —VF(x)
Then taking the derivative of F(tx) = F(x) — 0logt with respect to t and setting t = 1, we have
—0=VF(2)"2 = —2"V?*F(2)x

Lastly we have
(VE(@), h)| = [hTV2F (2)x] < ||2l[/2||A]]3"* = VO\/hTVF (2)h

Proposition 3. We claim that F*(y) = F*(—y) = sup,¢c x (—2Ty—F(z)) is a 0-logarithmically homogeneous
self-concordant barrier for K*.
Also,

-V F

-V F*

Moreover,
F(z) + F*(—y) + 0log(zTy) > 6logh — 0
with equality if and only if y = —tVF(z) for some t > 0.

Here we prove the last part of the proposition.
Proof First we show the <= direction. If y = —tVF(z), then 27y = —tVF(2)Tx = t0. So

F(x) 4+ F*(—y) + 0log(zTy) = F(z) + F*(VF(z)) — 0logt + 0 log(th)
=0logf + VF(x)"z =0logh — 0

Now we show the = direction. Minimize F(z) over {xTy = 2Ty} then VF(z) = —ty with ¢ > 0. and the
objective value is 6 log 8 — 6. O

2 Karmarkar’s Algorithm

We want to solve the primal problem:

min ¢’ x

st. reKnkL, efaz=1.

We make the following assumptions:



1. The feasible set is bounded.

2. There is a known feasible solution.

3. There is a known barrier F'.

4. There is a known optimal objective value c*.

Under these assumptions the following problem has objective value 0.

T T

min (c—ce)lz 2Ty
st. zeKnNnL, efz=1.
The idea of the algorithm is to minimize the Karmarkar potential:
v(z) = F(z) + 0log(cTz) st.z €L
Note that v(tx) = v(x). We know that
v(r) < —A=olz < Ce= /P
The algorithm has the following steps:

O'T

1. v(z) < vy, (z) =F(z)+ 6

UT; — 0+ 0log(oTxy)
2. Then we caculate the Newton direction:
1
er = arg mhin TV, (2:) + EhTVQth (x)h
st. heL, hTVF(z;)=0.

3. Then we use the damped Newton method:

1
=z + TTaf Y= —ef Vg, (x)
4. Set 2" to be any v(z") < wv(z') and 441 = eT—;/,

Theorem 4. v(zr) — v(z441) > 5 —log 3 >0
Analysis:

v(er) = v(@e) = v(zr) - v(z")
vlw) — o)
Vg, (1) — vz, (2)
w — log(1 + w)

AVARAVARLY,

It then suffices to prove that the Newton decrement w > %

Why do we use potential reduction? While the objective is the same, we can make much greater

progress in practice.

What if we don’t know c¢*? First find a lower bound ¢; < ¢*. Then run the procedure with ¢;.
1. If wy > %, continue.

2. If wy < %, find (using grid search) the smallest ¢; 11 > ¢; such that w; > % with ¢g41. Start using c¢;q1
and continue.



3 Primal-dual Potential Reduction Algorithm

Given the primal and dual problem setup as follows:

Primal Problem Dual Problem
min ¢’z max bTy
st. e KNn{b+ L} st. ye K*n{c+ Lt}

The idea of primal-dual potential reduction algorithm is to minimize the potential function:

Because,

v(z,y) = F(a) + FT(y) + (0 + p) log(z"y)

—A+0(logh —1)

if v(z,y) < —-A=2Ty<exp(
I

)

note: F(z) + F*(y) + plog(zTy) > Ologh — 0 (see Prop 3)

3.1 Algorithm Idea

The first idea is called primal update, where we fix y; and locally linearize v(x,y;) around x = x,

and let

T
LY
T, + const(y;)

v(w,y) < vi(x) = Fx) + (9+M)xt y

1
ey =arg m}}n RV (2e) + §hTV2’l}t(.’L‘t)h

Then the updating rule is:

Analysis:

Problem:

st. hel
wy = 1/ —eI' Vg (z4)
Ti41 = Tt + 1 +wt@t

V(@i41,Ye) — v, ye) < log(l4+wy) —we <0

wy could be small (or even 0), which means we are making small (or even zero) progress.

Fix: when w; is small, we can make great progress for the dual update, which we will define later.
Idea: suppose that w; = 0, then

Try

T
Vou(zy) = VF(2) + 0+ p)—— e L &~ UF@) ey + L = e+ L
Ty Yt 0+ p
T
Ty Yt
- hbgp
Yet1 T (1)



then

0(w, ye) — V(@ Yer) = (F(x) + F(y) + 0log(af y)) — (Fxe) + F 1 (yeg1) + 0log(zf yit1))

>0

+ plog(xf yr)) — plog(af yis1))

> plos( ) = los(1 + 1)
Dual update:
i e 2
Yt =~ M(VF(%) + V7F(x¢)er)

Theorem 5. Given y;11 € c+ LY, if w; < 1 and yrp1 € K*, then v(zs,y;) — v(ze, yer1) > plog efzjlf/é +
w + log(1 — wy)

Analysis:
0
defn. of e; = VF(x;) + ;_y“yt +V2F(z)es € LY =y —ys €L = yopq €+ LT
l‘t t

Choose 1 V0 to guarantee constant progress, and the number of iteration < é(\/@log %)

3.2 Primal-dual potential-reduction algorithm

1. start from feasible solution (z,,y;)
2. at t'" iteration, run primal update — (2441, ¥;) and dual update — (z¢, Y1)

3. if y¢11 is not strictly dual feasible, choose (x¢11,¥:), otherwise choose the one with smaller v(z,y)
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