EE C227C Convex Optimization and Approximation Lecture 28: Central Path

In this lecture, we will go over the central path following method and the runtime complexity. We will also go over the preliminaries of Primal-Dual conic problems.

Path Following 1

Lecturer: Jiantao Jiao

The Path Following algorithm is used to solve standard constrained minimization problems of the following.

$$\begin{aligned} \min_{x} \langle c, x \rangle \\ \text{s.t } x \in \boldsymbol{Q} \end{aligned} \tag{1}$$

Where Q is a bounded closed convex set and we have a v-self-concordant barrier F on Q. We will refer to the global minimum of (1) as c^* .

$\mathbf{2}$ **Central Path Method**

We will solve (1) by tracing the "central path" as discussed in the previous lecture.

$$x^{*}(t) = \underset{x \in domF}{\arg\min} f(t;x)$$

$$f(t;x) = t\langle c, x \rangle + F(x), \ t \ge 0$$
(2)

We refer to $x^*(t)$ as the "central path". If we take the gradient of f(t;x) and evaluate it at $x^*(t)$, it should be equal to 0, as per the first-order optimality conditions [1]. Thus, we get

$$\nabla_{x^*(t)} f(t;x) = tc + \nabla F(x^*(t)) = 0$$

As we can see from before, $x^*(0) = \arg \min F(x)$. We will refer to $x^*(0) = x_F^*$ as the "center" $x \in dom F$

of the central path. In order to update/trace the central path (2), we will use the "Approximate Centering Condition" to do so. This is defined as

$$\lambda_{f(t,.}(x) = \|f'(t;x)\|_x^* = \|tc + \nabla F(x)\|_x^* \le \beta$$
(3)

The β parameter is defined as the "centering parameter" as defined by Nesterov, and tends to be between $[0, \frac{1}{2}]$. Now we want to show that tracing the central path will result in a "close" approximation to c^* .

Theorem 1. 5.3.10 (Nesterov) [1] For any $t \geq 0$,

$$\langle c, x^*(t) \rangle - c^* \le \frac{v}{t} \tag{4}$$

More generally, if x satisfies (3), then we have

$$\langle c, x \rangle - c^* \le \frac{1}{t} \left(v + \frac{(\beta + \sqrt{v})\beta}{1 - \beta} \right)$$
 (5)

When $\beta = 0$, (5) simplifies to (4).

Lecture 22 - 03/17/2022

Scribe: Rahul Jain

An observation is that we often want F to have a small v-value. We also want to ensure that β does not change too much from one value of t to the next value of t.

Here we present two lemmas that presents how to increment t in an appropriate manner and establish that the growth in t is subsantial (linear).

Lemma 2. 5.2.2 (Nesterov) Let $\tau \in [0, 1/2]$. If x satisfies (3), then if

$$|\gamma| \le \tau - \tau^2 \left(1 + \tau + \frac{\tau}{1 + \tau + \tau^2} \right)$$

then

$$\|t_t c + \nabla F(x_t)\|_{x_t}^* \le \beta \tag{6}$$

Where $t_t = t + \frac{\gamma}{\|c\|_x^*}$ and $x_t = x - \frac{1}{1+\epsilon} [\nabla^2 F(x)]^{-1} (t_t c + \nabla F(x_t))$ and $\epsilon = \frac{\lambda^2}{1+\lambda}$, $\lambda = \|t_t c + \nabla F(x)\|_x^*$

Lemma 3. 5.3.2 (Nesterov)

$$\|c\|_x^* \le \frac{1}{t} \left(\beta + \sqrt{v}\right)$$

From these two lemmas we can derive the path following algorithm.

3 Algorithm

- 1. Set $t_0 = 0$. Choose $\epsilon \ge 0, x_0 \in dom F$ such that $\|\nabla F(x_0)\|_{x_0}^* \le \beta$
- 2. For $k \ge 0$

•
$$t_{k+1} = t_k + \frac{\gamma}{\|c\|_{x_k}^*}$$

•
$$x_{k+1} = x_k - \frac{1}{1+\epsilon_k} [\nabla^2 F(x_k)]^{-1} (t_{k+1}c + \nabla F(x_k))$$

Where $\lambda_k = \|t_{k+1}c + \nabla F(x_k)\|_{x_k}^*$ and $\epsilon_k = \frac{\lambda_k^2}{1+\lambda_k}$

3. Terminate when $t_k \ge \frac{1}{\epsilon} \left(v + \frac{(\beta + \sqrt{v})\beta}{1 - \beta} \right)$

It is not clear how to obtain x_0 . We will go back to this later. Keep in mind that the termination condition is not dependent on the number of iterations k, but the value t_k , which doubles roughly (very fast!)

This begs the question, how many iterations do we need?

Theorem 4. 5.3.11 (Nesterov) [1] The path following algorithm terminates after N steps where

$$N \ge \mathcal{O}\left(\sqrt{v} * \log\left(\frac{v \|c\|_{x_F^*}^*}{\epsilon}\right)\right)$$

Proof Let $r_0 = ||x_0 - x_F^*||_{x_0}^* \le \frac{\beta}{1-\beta}$. Using the same terminology from Lemma 2, we get

$$\frac{\gamma}{t_1} = \|c\|_{x_0}^* \le \frac{1}{1 - r_0} \|c\|_{x_F^*}^* \le \frac{1 - \beta}{1 - 2\beta} \|c\|_{x_F^*}^*$$

Thus

$$t_1 \ge \frac{\gamma(1-2\beta)}{(1-\beta) \|c\|_{x_F^*}^*}$$

More generally,

$$t_k \ge \frac{\gamma(1-2\beta)}{(1-\beta)\|c\|_{x_F^*}^*} \left(1 + \frac{\gamma}{\beta + \sqrt{v}}\right)^{k-1}$$

An important thing to note is that the first term within the \mathcal{O} is the dominant term while second term in the bound tends to be very small. This still begs the question: How do we get the initial point x_0 ? We could use Dampened Newton's method to find x_0 but it is too slow so we will use another "path following" method, but in reverse to find x_0 .

4 Auxillary Path Following

Let us define $y^*(t) = \underset{y \in domF}{\arg\min[-t\langle \nabla F(y_0), y \rangle + F(y)]}$ We start with $t_0 = 1$, and then we decrease. If we take the gradient of $y^*(t)$ and evaluate at y_0 , we will get $\nabla_y y^*(t)|_{y=y_0} = -\nabla F(y_0) + \nabla F(y_0) = 0$. Thus it is trivial to get the first point y_0 in this auxillary path following scheme. Our resulting algorithm will resemble the path following method in reverse to get the initial point x_0 for the original problem.[1]

4.1 Scheme

- 1. $y_0 \in dom F, t_0 = 1$
- 2. For $k \ge 0$

•
$$t_{k+1} = t_k + \frac{\gamma}{\|\nabla F(y_0)\|_{y_k}^*}$$

• $y_{k+1} = y_k - \frac{1}{1+\epsilon_k} [\nabla^2 F(y_k)]^{-1} (-t_{k+1} \nabla F(y_0) + \nabla F(y_k))$

Where $\lambda_k = \|t_{k+1} \nabla F(y_0) - \nabla F(y_k)\|_{y_k}^*$ and $\epsilon_k = \frac{\lambda_k^2}{1 + \lambda_k}$

3. Terminate when $\|\nabla F(y_k)\|_{y_k}^* \leq \tau$. Set $\epsilon_k = \frac{\lambda_F(y_k)^2}{1+\lambda_F(y_k)}$ and $\bar{x} = y_k - \frac{1}{1+\epsilon_k} [\nabla^2 F(y_k)]^{-1} (\nabla F(y_k))$

5 Primal-Dual Conic Problems

Definition 5. A set $K \subset \mathbb{R}^n$ is a convex cone if K is a nonempty convex set with the property that $x \in K, t \ge 0 \Rightarrow tx \in K$

Definition 6. A convex cone K is pointed if K does not contain lines (only rays)

5.1 Dual Cones

Definition 7. $K^* = \{s \in \mathbb{R}^n \mid \langle s, x \rangle \ge 0 \ \forall x \in K\}$

Let us go through an example of finding the dual cone of $K = \{x \in \mathbb{R}^n \mid x > 0\}$ (the nonnegative orthant cone). We can see that by simply plugging in e_1, e_2, \dots, e_n , where e_i is the i^{th} basis vector, into the definition of the dual cone of K, we will get $K^* = \{x \in \mathbb{R}^n \mid x > 0\} = K$. Because $K = K^*$, we call K self-dual.

Theorem 8. Let K be a closed convex cone. Then

- 1. K^* is a closed convex cone. Moreover, $(K^*)^* = K$
- 2. K is pointed iff K^* has a nonempty interior (and vice versa)
- 3. $s \in K^*$ is strictly positive on K (besides the 0 vector) $\iff K(s) = \{x \in K \mid \langle s, x \rangle \leq 1\}$

References

[1] Y. Nesterov, Lectures on Convex Optimization. Springer Optimization and Its Applications.