| EE C227C Convex Optimization and Approximation | Lecture 22-03/17/2022 |
| :--- | ---: | ---: |
| Lecture 28: Central Path | |
| Lecturer: Jiantao Jiao | Scribe: Rahul Jain |

In this lecture, we will go over the central path following method and the runtime complexity. We will also go over the preliminaries of Primal-Dual conic problems.

1 Path Following

The Path Following algorithm is used to solve standard constrained minimization problems of the following.

$$
\begin{array}{r}
\min _{x}\langle c, x\rangle \\
\text { s.t } x \in \boldsymbol{Q} \tag{1}
\end{array}
$$

Where \boldsymbol{Q} is a bounded closed convex set and we have a v-self-concordant barrier F on \boldsymbol{Q}. We will refer to the global minimum of (1) as c^{*}.

2 Central Path Method

We will solve (1) by tracing the "central path" as discussed in the previous lecture.

$$
\begin{array}{r}
x^{*}(t)=\underset{x \in \operatorname{dom} F}{\arg \min } f(t ; x) \tag{2}\\
f(t ; x)=t\langle c, x\rangle+F(x), t \geq 0
\end{array}
$$

We refer to $x^{*}(t)$ as the "central path". If we take the gradient of $f(t ; x)$ and evaluate it at $x^{*}(t)$, it should be equal to 0 , as per the first-order optimality conditions [1]. Thus, we get

$$
\nabla_{x^{*}(t)} f(t ; x)=t c+\nabla F\left(x^{*}(t)\right)=0
$$

As we can we can see from before, $x^{*}(0)=\underset{x \in \operatorname{dom} F}{\arg \min } F(x)$. We will refer to $x^{*}(0)=x_{F}^{*}$ as the "center" of the central path. In order to update/trace the central path (2), we will use the "Approximate Centering Condition" to do so. This is defined as

$$
\begin{equation*}
\lambda_{f(t, .}(x)=\left\|f^{\prime}(t ; x)\right\|_{x}^{*}=\|t c+\nabla F(x)\|_{x}^{*} \leq \beta \tag{3}
\end{equation*}
$$

The β parameter is defined as the "centering parameter" as defined by Nesterov, and tends to be between $\left[0, \frac{1}{2}\right]$. Now we want to show that tracing the central path will result in a "close" approximation to c^{*}.
Theorem 1. 5.3.10 (Nesterov) [1]
For any $t \geq 0$,

$$
\begin{equation*}
\left\langle c, x^{*}(t)\right\rangle-c^{*} \leq \frac{v}{t} \tag{4}
\end{equation*}
$$

More generally, if x satisfies (3), then we have

$$
\begin{equation*}
\langle c, x\rangle-c^{*} \leq \frac{1}{t}\left(v+\frac{(\beta+\sqrt{v}) \beta}{1-\beta}\right) \tag{5}
\end{equation*}
$$

When $\beta=0$, (5) simplifies to (4).

An observation is that we often want F to have a small v-value. We also want to ensure that β does not change too much from one value of t to the next value of t.

Here we present two lemmas that presents how to increment t in an appropriate manner and establish that the growth in t is subsantial (linear).

Lemma 2. 5.2.2 (Nesterov) Let $\tau \in[0,1 / 2]$. If x satisfies (3), then if

$$
|\gamma| \leq \tau-\tau^{2}\left(1+\tau+\frac{\tau}{1+\tau+\tau^{2}}\right)
$$

then

$$
\begin{equation*}
\left\|t_{t} c+\nabla F\left(x_{t}\right)\right\|_{x_{t}}^{*} \leq \beta \tag{6}
\end{equation*}
$$

Where $t_{t}=t+\frac{\gamma}{\|c\|_{x}^{*}}$ and $x_{t}=x-\frac{1}{1+\epsilon}\left[\nabla^{2} F(x)\right]^{-1}\left(t_{t} c+\nabla F\left(x_{t}\right)\right)$ and $\epsilon=\frac{\lambda^{2}}{1+\lambda}, \quad \lambda=\left\|t_{t} c+\nabla F(x)\right\|_{x}^{*}$
Lemma 3. 5.3.2 (Nesterov)

$$
\|c\|_{x}^{*} \leq \frac{1}{t}(\beta+\sqrt{v})
$$

From these two lemmas we can derive the path following algorithm.

3 Algorithm

1. Set $t_{0}=0$. Choose $\epsilon \geq 0, x_{0} \in \operatorname{dom} F$ such that $\left\|\nabla F\left(x_{0}\right)\right\|_{x_{0}}^{*} \leq \beta$
2. For $k \geq 0$

- $t_{k+1}=t_{k}+\frac{\gamma}{\|c\|_{x_{k}}^{*}}$
- $x_{k+1}=x_{k}-\frac{1}{1+\epsilon_{k}}\left[\nabla^{2} F\left(x_{k}\right)\right]^{-1}\left(t_{k+1} c+\nabla F\left(x_{k}\right)\right)$

Where $\lambda_{k}=\left\|t_{k+1} c+\nabla F\left(x_{k}\right)\right\|_{x_{k}}^{*}$ and $\epsilon_{k}=\frac{\lambda_{k}^{2}}{1+\lambda_{k}}$
3. Terminate when $t_{k} \geq \frac{1}{\epsilon}\left(v+\frac{(\beta+\sqrt{v}) \beta}{1-\beta}\right)$

It is not clear how to obtain x_{0}. We will go back to this later. Keep in mind that the termination condition is not dependent on the number of iterations k , but the value t_{k}, which doubles roughly (very fast!)

This begs the question, how many iterations do we need?
Theorem 4. 5.3.11 (Nesterov) [1] The path following algorithm terminates after N steps where

$$
N \geq \mathcal{O}\left(\sqrt{v} * \log \left(\frac{v\|c\|_{x_{F}^{*}}^{*}}{\epsilon}\right)\right)
$$

Proof Let $r_{0}=\left\|x_{0}-x_{F}^{*}\right\|_{x_{0}}^{*} \leq \frac{\beta}{1-\beta}$. Using the same terminology from Lemma 2, we get

$$
\frac{\gamma}{t_{1}}=\|c\|_{x_{0}}^{*} \leq \frac{1}{1-r_{0}}\|c\|_{x_{F}^{*}}^{*} \leq \frac{1-\beta}{1-2 \beta}\|c\|_{x_{F}^{*}}^{*}
$$

Thus

$$
t_{1} \geq \frac{\gamma(1-2 \beta)}{(1-\beta)\|c\|_{x_{F}^{*}}^{*}}
$$

More generally,

$$
t_{k} \geq \frac{\gamma(1-2 \beta)}{(1-\beta)\|c\|_{x_{F}^{*}}^{*}}\left(1+\frac{\gamma}{\beta+\sqrt{v}}\right)^{k-1}
$$

An important thing to note is that the first term within the \mathcal{O} is the dominant term while second term in the bound tends to be very small. This still begs the question: How do we get the initial point x_{0} ? We could use Dampened Newton's method to find x_{0} but it is too slow so we will use another "path following" method, but in reverse to find x_{0}.

4 Auxillary Path Following

Let us define $y^{*}(t)=\underset{y \in \operatorname{dom} F}{\arg \min }\left[-t\left\langle\nabla F\left(y_{0}\right), y\right\rangle+F(y)\right]$ We start with $t_{0}=1$, and then we decrease. If we take the gradient of $y^{*}(t)$ and evaluate at y_{0}, we will get $\left.\nabla_{y} y^{*}(t)\right|_{y=y_{0}}=-\nabla F\left(y_{0}\right)+\nabla F\left(y_{0}\right)=0$. Thus it is trivial to get the first point y_{0} in this auxillary path following scheme. Our resulting algorithm will resemble the path following method in reverse to get the initial point x_{0} for the original problem.[1]

4.1 Scheme

1. $y_{0} \in \operatorname{dom} F, t_{0}=1$
2. For $k \geq 0$

- $t_{k+1}=t_{k}+\frac{\gamma}{\left\|\nabla F\left(y_{0}\right)\right\|_{y_{k}}^{*}}$
- $y_{k+1}=y_{k}-\frac{1}{1+\epsilon_{k}}\left[\nabla^{2} F\left(y_{k}\right)\right]^{-1}\left(-t_{k+1} \nabla F\left(y_{0}\right)+\nabla F\left(y_{k}\right)\right)$

Where $\lambda_{k}=\left\|t_{k+1} \nabla F\left(y_{0}\right)-\nabla F\left(y_{k}\right)\right\|_{y_{k}}^{*}$ and $\epsilon_{k}=\frac{\lambda_{k}^{2}}{1+\lambda_{k}}$
3. Terminate when $\left\|\nabla F\left(y_{k}\right)\right\|_{y_{k}}^{*} \leq \tau$. Set $\epsilon_{k}=\frac{\lambda_{F}\left(y_{k}\right)^{2}}{1+\lambda_{F}\left(y_{k}\right)}$ and $\bar{x}=y_{k}-\frac{1}{1+\epsilon_{k}}\left[\nabla^{2} F\left(y_{k}\right)\right]^{-1}\left(\nabla F\left(y_{k}\right)\right)$

5 Primal-Dual Conic Problems

Definition 5. A set $K \subset \mathbb{R}^{n}$ is a convex cone if K is a nonempty convex set with the property that $x \in K, t \geq 0 \Rightarrow t x \in K$

Definition 6. A convex cone K is pointed if K does not contain lines (only rays)

5.1 Dual Cones

Definition 7. $K^{*}=\left\{s \in \mathbb{R}^{n} \mid\langle s, x\rangle \geq 0 \forall x \in K\right\}$
Let us go through an example of finding the dual cone of $K=\left\{x \in R^{n} \mid x>0\right\}$ (the nonnegative orthant cone). We can see that by simply plugging in $e_{1}, e_{2}, \ldots . e_{n}$, where e_{i} is the $i^{t h}$ basis vector, into the definition of the dual cone of K , we will get $K^{*}=\left\{x \in R^{n} \mid x>0\right\}=K$. Because $K=K^{*}$, we call K self-dual.

Theorem 8. Let K be a closed convex cone. Then

1. K^{*} is a closed convex cone. Moreover, $\left(K^{*}\right)^{*}=K$
2. K is pointed iff K^{*} has a nonempty interior (and vice versa)
3. $s \in K^{*}$ is strictly positive on K (besides the 0 vector) $\Longleftrightarrow K(s)=\{x \in K \mid\langle s, x\rangle \leq 1\}$

References

[1] Y. Nesterov, Lectures on Convex Optimization. Springer Optimization and Its Applications.

