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In this lecture, we will go over the central path following method and the runtime complexity. We will also
go over the preliminaries of Primal-Dual conic problems.

1 Path Following

The Path Following algorithm is used to solve standard constrained minimization problems of the following.

minx⟨c, x⟩
s.t x ∈ Q

(1)

Where Q is a bounded closed convex set and we have a v-self-concordant barrier F on Q. We will refer to
the global minimum of (1) as c∗.

2 Central Path Method

We will solve (1) by tracing the ”central path” as discussed in the previous lecture.

x∗(t) = argmin
x∈domF

f(t;x)

f(t;x) = t⟨c, x⟩+ F (x), t ≥ 0
(2)

We refer to x∗(t) as the ”central path”. If we take the gradient of f(t;x) and evaluate it at x∗(t), it should
be equal to 0, as per the first-order optimality conditions [1]. Thus, we get

∇x∗(t)f(t;x) = tc+∇F (x∗(t)) = 0

As we can we can see from before, x∗(0) = argmin
x∈domF

F (x). We will refer to x∗(0) = x∗
F as the ”center”

of the central path. In order to update/trace the central path (2), we will use the ”Approximate Centering
Condition” to do so. This is defined as

λf(t,.(x) = ∥f ′(t;x)∥∗x = ∥tc+∇F (x)∥∗x ≤ β (3)

The β parameter is defined as the ”centering parameter” as defined by Nesterov, and tends to be between
[0, 1

2 ]. Now we want to show that tracing the central path will result in a ”close” approximation to c∗.

Theorem 1. 5.3.10 (Nesterov) [1]
For any t ≥ 0,

⟨c, x∗(t)⟩ − c∗ ≤ v

t
(4)

More generally, if x satisfies (3), then we have

⟨c, x⟩ − c∗ ≤ 1

t

(
v +

(β +
√
v)β

1− β

)
(5)

When β = 0, (5) simplifies to (4).

1



An observation is that we often want F to have a small v-value. We also want to ensure that β does not
change too much from one value of t to the next value of t.

Here we present two lemmas that presents how to increment t in an appropriate manner and establish
that the growth in t is subsantial (linear).

Lemma 2. 5.2.2 (Nesterov) Let τ ∈ [0, 1/2]. If x satisfies (3), then if

|γ| ≤ τ − τ2
(
1 + τ +

τ

1 + τ + τ2

)
then

∥ttc+∇F (xt)∥∗xt
≤ β (6)

Where tt = t+ γ
∥c∥∗

x
and xt = x− 1

1+ϵ [∇
2F (x)]−1(ttc+∇F (xt)) and ϵ = λ2

1+λ , λ = ∥ttc+∇F (x)∥∗x

Lemma 3. 5.3.2 (Nesterov)

∥c∥∗x ≤ 1

t

(
β +

√
v
)

From these two lemmas we can derive the path following algorithm.

3 Algorithm

1. Set t0 = 0. Choose ϵ ≥ 0, x0 ∈ domF such that ∥∇F (x0)∥∗x0
≤ β

2. For k ≥ 0

• tk+1 = tk + γ
∥c∥∗

xk

• xk+1 = xk − 1
1+ϵk

[∇2F (xk)]
−1(tk+1c+∇F (xk))

Where λk = ∥tk+1c+∇F (xk)∥∗xk
and ϵk =

λ2
k

1+λk

3. Terminate when tk ≥ 1
ϵ

(
v + (β+

√
v)β

1−β

)
It is not clear how to obtain x0. We will go back to this later. Keep in mind that the termination condition
is not dependent on the number of iterations k, but the value tk, which doubles roughly (very fast!)

This begs the question, how many iterations do we need?

Theorem 4. 5.3.11 (Nesterov) [1] The path following algorithm terminates after N steps where

N ≥ O

(
√
v ∗ log

(
v∥c∥∗x∗

F

ϵ

))

Proof Let r0 = ∥x0 − x∗
F ∥∗x0

≤ β
1−β . Using the same terminology from Lemma 2, we get

γ

t1
= ∥c∥∗x0

≤ 1

1− r0
∥c∥∗x∗

F
≤ 1− β

1− 2β
∥c∥∗x∗

F

Thus

t1 ≥ γ(1− 2β)

(1− β)∥c∥∗x∗
F
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More generally,

tk ≥ γ(1− 2β)

(1− β)∥c∥∗x∗
F

(
1 +

γ

β +
√
v

)k−1

An important thing to note is that the first term within the O is the dominant term while second term
in the bound tends to be very small. This still begs the question: How do we get the initial point x0? We
could use Dampened Newton’s method to find x0 but it is too slow so we will use another ”path following”
method, but in reverse to find x0.

4 Auxillary Path Following

Let us define y∗(t) = argmin
y∈domF

[−t⟨∇F (y0), y⟩+ F (y)] We start with t0 = 1, and then we decrease. If we take

the gradient of y∗(t) and evaluate at y0, we will get ∇yy
∗(t)|y=y0

= −∇F (y0) + ∇F (y0) = 0. Thus it is
trivial to get the first point y0 in this auxillary path following scheme. Our resulting algorithm will resemble
the path following method in reverse to get the initial point x0 for the original problem.[1]

4.1 Scheme

1. y0 ∈ domF, t0 = 1

2. For k ≥ 0

• tk+1 = tk + γ
∥∇F (y0)∥∗

yk

• yk+1 = yk − 1
1+ϵk

[∇2F (yk)]
−1(−tk+1∇F (y0) +∇F (yk))

Where λk = ∥tk+1∇F (y0)−∇F (yk)∥∗yk
and ϵk =

λ2
k

1+λk

3. Terminate when ∥∇F (yk)∥∗yk
≤ τ . Set ϵk = λF (yk)

2

1+λF (yk)
and x̄ = yk − 1

1+ϵk
[∇2F (yk)]

−1(∇F (yk))

5 Primal-Dual Conic Problems

Definition 5. A set K ⊂ Rn is a convex cone if K is a nonempty convex set with the property that
x ∈ K, t ≥ 0 ⇒ tx ∈ K

Definition 6. A convex cone K is pointed if K does not contain lines (only rays)

5.1 Dual Cones

Definition 7. K∗ = {s ∈ Rn | ⟨s, x⟩ ≥ 0 ∀x ∈ K}

Let us go through an example of finding the dual cone of K = {x ∈ Rn | x > 0} (the nonnegative orthant
cone). We can see that by simply plugging in e1, e2, ....en, where ei is the i

th basis vector, into the definition
of the dual cone of K, we will get K∗ = {x ∈ Rn | x > 0} = K. Because K = K∗, we call K self-dual.
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Theorem 8. Let K be a closed convex cone. Then

1. K∗ is a closed convex cone. Moreover, (K∗)∗ = K

2. K is pointed iff K∗ has a nonempty interior (and vice versa)

3. s ∈ K∗ is strictly positive on K (besides the 0 vector) ⇐⇒ K(s) = {x ∈ K | ⟨s, x⟩ ≤ 1}
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