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Lecture 17: Newton’s Method, Path Following and S-C Barrier
Lecturer: Jiantao Jiao Scribe: Hyungki Im, Dilara Aykanat

In this lecture we continue to study a convergence of variants of the Newton’s Method. Also, we study
central path following method and self-concordant barrier.

1 Quadratic Convergence of the Newton’s Method

We start by reviewing some concepts of variants of Newton’s method. Basically, Newton’s method have the
following update rule.

xk+1 = xk − 1

1 + ξk
[∇2f(xk)]

−1∇f(xk) (1)

In this lecture, we consider three different variants of Newton’s method which can be expressed as:

1. (Standard Newton’s Method) ξk = 0, ∀k ∈ N

2. (Damped Newton’s Method) ξk = Mfλf (xk)

3. (Intermediate Newton’s Method) ξk =
M2

fλ
2
f (xk)

1+Mfλf (xk)

In the previous lecture, we defined λf (xk) as λf (xk) =

√
∇f(xk)⊤

(
∇2f(xk)

)(−1)∇f(xk) and this can be

shortly expressed as ∥∇f(xk)∥∗x. We can see that the Intermediate Newton’s methods has more aggressive

step size than a step size of the Damped Newton’s method because
M2

fλ
2
f (xk)

1+Mfλf (xk)
< Mfλf (xk). The following

theorem explains how a value of λf (xk) changes after an update of each Newton’s method.

Theorem 1 (Theorem 5.2.2 of [1]). Suppose we have x ∈ domf and use λ to denote λ = λf (x). Then the
following holds:

1. If λ < 1
Mf

and the point x+ is generated by the Standard Newton’s method, then x+ ∈ domf and

λf (x+) ≤ Mfλ
2

(1−Mfλ2) hold.

2. If the point x+ is generated by the Damped Newton’s method, then λf (x+) ≤ Mfλ
2(1 + 1

1+Mfλ
) holds.

3. If Mfλ + (Mfλ)
2 + (Mfλ)

3 ≤ 1 and the point x+ is generated by the Intermediate Newton’s method,
then x+ ∈ domf and

λf (x+) ≤ Mfλ
2
(
1 +Mfλ+

Mfλ

1 +Mfλ+ (Mfλ)2

)
≤ Mfλ

2(1 + 2Mfλ) (2)

Among all the variants of Theorem 1, if we assume λ < 1
2Mf

, (2) seems attractive as (2) implies quadratic

convergence of λ. Indeed, if λ < 1
2Mf

, we have

Mfλ(1 + 2Mfλ) ≤ 1 ⇒ Mfλ
2(1 + 2Mfλ) ≤ λ (3)

and this implies the quadratic convergence of λ, if Intermediate Newton’s method is used. Moreover, if
λ < 1

2Mf
, the condition Mfλ + (Mfλ)

2 + (Mfλ)
3 ≤ 1 is satisfied. In [1], Nesterov used a term ‘region of

quadratic convergence’ to denote a set {
x ∈ domf : λf (x) <

1

2Mf

}
. (4)

Thus, Theorem 1 leads us to the following scheme to solve a minimization problem.
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• First Stage: When λf (xk) ≥ 1
2Mf

. At this stage we use Damped Newton’s Method to update our

solution candidate(xk). In the previous lecture, we learned that Damped Newton’s Method guarantees

f(xk+1) ≤ f(xk)−
1

M2
f

ω(
1

2
) (5)

where we previously defined ω : R → R as ω(t) = t− log(1 + t). This implies the number iterations of
the first stage is bounded as follows:

N ≤ ∆f (x0)ω(
1

2
) (6)

where ∆f (x0) := M2
f (f(x0)− f(x∗

f )) and x∗
f is the optimal solution of the problem.

• Second Stage: When λf (xk) <
1

2Mf
. At this stage, we apply interdiate Newton’s Method to update

our solution candidate. By theorem 2, this process converges quadratically.

The most of the effort of this scheme are spend at the first stage because quadratic convergence is very fast.

2 Path Following

Here we begin by introducing a modern view of optimization. Lets assume domf = {x ∈ Rn : |f(x)| < ∞}
is a open set and denote Domf to denote a closure of domf(cl(domf)).

Definition 2. We define a standard constrained minimization problem as

min ⟨c, x⟩
s.t. x ∈ Q

(7)

where Q is a closed convex set and have a self-concordant function f such that domf = Q.

Now we consider a path-following technique to solve a standard constrained minimization problem.
We will solve (7) by tracing the central path defined as follows:

x∗(t) = argmin
x∈domf

f(t, x)

where f(t;x) = t ⟨c, x⟩ + F (x). It is clear that when we have t = 0 we minimize F (x) and we minimize
⟨c, x⟩ when t goes to infinity. Suppose that x = x∗(t) is given for a particular t, if we increase the value
of t to obtain t+ = t + ∆, x∗(t) will no longer be optimal. However, it should still be in the regime of
quadratic convergence. In other words, we should guarantee that λf(t+∆;x)(x) ≤ β < 1

2 where β is called the
centering parameter. Since a change in t does not effect the Hessian, we also have ∇2f(t+∆;x) = ∇2f(t;x).

Remember that x = x∗(t) equates the gradient to zero such that tc +∇f(x) = 0 implying c = −∇f(x)
t . So

we should satisfy the following approximate centering condition:

λf(t+∇;x)(x) = ∥∇f(t+∆;x)∥∗x = ∥t+c+∇f(x)∥∗x
= ∥∆c∥∗x
= ∆∥c∥∗x

=
∆

t
∥∇f(x)∥∗x ≤ β

We see that f(x) should not only be self-concordant but also for every x, ∥∇f(x)∥∗x must be small as
well in order to satisfy the latter condition. Thus, we come to a definition of a self-concordant barrier.
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3 Self-concordant Barrier

Definition 3 (Definition 5.3.2 of [1]). Let F (.) be a standard self-concordant function. We call it a ν
self-concordant barrier for the set Dom F , if:

∇2F (x) ≥ 1

ν
∇F (x)∇F (x)T , all x ∈ dom F

If ∇2f(x) > 0 then the hessian matrix is invertible, we have
〈
∇F (x), [∇2F (x)]−1∇F (x)

〉
≤ ν. A good

F (.) is then characterized by a small ν to allow for large ∆ in the algorithm. However, it was shown that
for generic self-concordant barrier functions, ν cannot be too small. In one-dimensional setting for example,
ν ≥ 1. Another detail is that this requirement is not too strong in the sense that Nesterov was able to show
F (.)’s constructibility for any domain.
Example 4 (Example 5.3.1 of [1]).

1. Linear function: f(x) = α+ ⟨a, x⟩, dom f = E. Clearly, f is a self-concordant function as ∇3f(x) = 0
but for a ̸= 0 this function is not a self-concordant barrier since ∇2f(x) = 0.

2. Convex quadratic function: Let A symmetric, A > 0. Consider the function:

f(x) = α+ ⟨a, x⟩+ 1

2
⟨Ax, x⟩ , dom f = Rn

Then ∇f(x) = a+Ax and ∇2f(x) = A. Therefore,〈
[∇2f(x)]−1∇f(x),∇f(x)

〉
=

〈
A−1(Ax+ a), Ax+ a

〉
= ⟨Ax, x⟩+ 2 ⟨a, x⟩+

〈
A−1a, a

〉
Clearly, this value is unbounded from above on Rn. Thus, a quadratic function is not a self-concordant
barrier.

3. Logarithmic barrier for a ray: Consider the following function of one variable:

F (x) = − lnx, domF = {x ∈ R | x > 0}

Then ∇F (x) = −1
x and ∇2F (x) = 1

x2 > 0. Therefore

(∇F (x))2

∇2F (x)
=

1

x2
.x2 = 1.

Thus, F (.) is a ν-self-concordant barrier for the set {x ≥ 0} with ν = 1.

Theorem 5 (Theorem 5.3.2 of [1]). Let Fi be νi-self-concordant barriers, i = 1, 2. Then the function
F (x) = F1(x) + F2(x) is a self-concordant barrier for a convex set DomF = DomF1

⋂
DomF2 with the

parameter ν = ν1 + ν2.

Theorem 6 (Theorem 5.3.4 of [1]). Let the function f be self-concordant with constant Mf ≥ 0. Suppose
that the set

L(β) = {x ∈ domf : f(x) ≤ β}

has nonempty interior and f(x) ≥ f∗ for all x ∈ domf . Then the function

F (x) = −ν ln(β − f(x))

with any ν ≥ 1 +M2
f (β − f∗) is a ν-self-concordant barrier for the level set L(β).
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Properties of self-concordant barrier

Theorem 7 (Theorem 5.3.7 of [1]). F is a ν-self-concordant barrier. For any x and y from dom F, we have

⟨∇F (x), y − x⟩ < ν.

Theorem 8 (Theorem 5.3.9 of [1]). Let F be a ν-self-concordant barrier for the set Dom F . The point
x∗
F = argminx∈domF F (x) is called the analytic center of the convex set Dom F , generated by the barrier F .

Assume that the analytic center of a ν-self-concordant barrier F exists. Then for any x ∈ Dom F we have:

∥x− x∗
F ∥x∗

F
≤ ν + 2

√
ν

Corollary 9 (Corollary 5.3.4 of [1]). Let Dom F be bounded. Then for any x ∈ domF and v ∈ Rn we have

∥v∥x ≤ (ν + 2
√
ν)∥v∥∗x∗

F

In other words, for any x ∈ domF we have

∇2F (x) ≥ 1

(ν + 2
√
ν)2

∇2F (x∗
F ).
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