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Lecturer: Jiantao Jiao Scribe: Yimeng Wang

In the last lecture, we pointed out several issues with our initial analysis of Newton’s Method. Moreover,
we introduced the concept of self-concordant functions which will be the main focus of variants of Newton’s
Methods. In this lecture, we will refine our definition of self-concordant functions and discuss several nice
properties of them. In the end, we will see how these properties come in place while analyzing variants of
Newton’s methods.

1 Definition of Self-Concordant Functions

Definition 1. The epigraph of a function f : Rn → R is defined as

Epigraph(f) = {(x, t)|t ≥ f(x), x ∈ dom(f)}

where dom(f)
∆
= {x ∈ Rn| |f(x)| < ∞} is the domain of f .

We say a function f : Rn → R is closed if the epigraph of f is closed. With this notion in mind, we can now
give the definition of self-concordant functions.

Definition 2. (Self-concordant functions) Let f ∈ C3(dom(f)) (i.e., f ′′′ exists and is continuous) be a
closed convex function such that dom(f) is open. Then, we say f is self-concordant if there exists Mf ≥ 0
such that

|D3f(x)[u, u, u]| ≤ 2Mf∥u∥2∇2f(x)

for all x ∈ dom(f). We say f is standard self-concordant if Mf = 1.

Here, D3f(x)[u, u, u] is the evaluation of three-dimensional tensor (defined in last lecture) and ∥v∥x =√
vT∇2f(x)v for v ∈ Rn. This definition of norm is valid since f is convex. Notice that in real-life opti-

mization problems the domain may not be open. In such cases, we will apply techniques like adding slack
variables to address this issue. But we will not be discussing those in this lecture.

The definition above requires function f to be closed. The purpose of this is to rule out some ill-behaved
functions that are not of interest. See the Figure belowfor an example of such functions. We can definitely
restrict ourselves to continuous functions but closed functions are more general than continuous functions
and they are also nice enough to work with.

2 Properties of self-concordant functions

In this section, we will discuss various nice properties of self-concordant functions. The proofs of the results
below can be found in Nesterov’s book [1].

Lemma 3. (Theorem 5.1.1 of [1]) Let f1 : Rn → R be self-concordant with parameter M1 and f2 : Rn → R
be self-concordant with parameter M2. Let α, β > 0. Then the function f(x) = αf1(x) + βf2(x) is self-
concordant with parameter

Mf = max

{
M1√
α
,
M2√
β

}
and dom(f) = dom(f1) ∩ dom(f2).

1



Figure 1: Consider the function f(x) = α when x = 0, f(x) = β when x = 1 and f(x) = 0
for all x ∈ (0, 1). This function is clearly convex but the epigraph (shaded area) is not closed.

As an immediate consequence of the lemma, we have the following corollary.

Corollary 4. If f is self-concordant with parameter M , then ϕ = αf is M√
α
self-concordant for α > 0.

Proof Take f1 = f and f2 = 0. Then apply the lemma.

Lemma 5. (Theorem 5.1.2 of [1]) Affine Invariance: Suppose f is Mf self-concordant. Let L(x) = Ax+ b
be a linear operator. Then ϕ(x) = f(L(x)) is also self-concordant with Mϕ = Mf .

We are now in the place to write down the main inequalities of self-concordant functions. To this end, recall
the definition of Dikin’s Ellipsoid:

W o(x; r) = {y ∈ Rn|∥y − x∥x ≤ r}

where ∥h∥x =
√
hT∇2f(x)h. The dual norm of ∥ · ∥x is defined as:

∥g∥∗x =
√

gT (∇2f(x))−1g

As a result, by Holder’s inequality, we have |hT g| ≤ ∥h∥x · ∥g∥∗x.

Theorem 6. (Theorem 5.1.5, 5.1.8, 5.1.9 of [1]) Let W (x; r) be the closure of W o(x; r), i.e.

W (x; r) = cl(W o(x; r)) = {y ∈ Rn | ∥y − x∥x ≤ r}

Then, we have:

1. For any x ∈ dom(f), we have W o
(
x; 1

Mf

)
⊆ dom(f).

2. Six necessary and sufficient equivalent characterizations of self-concordant functions:

(a) For all x, y ∈ dom(f), the following inequality holds:

∥y − x∥y ≥ ∥y − x∥x
1 +Mf∥y − x∥x
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(b) If ∥y − x∥x < 1
Mf

, then

∥y − x∥y ≤ ∥y − x∥x
1 +Mf∥y − x∥x

(c) For all x, y ∈ dom(f),

⟨∇f(y)−∇f(x), y − x⟩ ≥ ∥y − x∥2x
1 +Mf∥y − x∥x

(d) For all x, y ∈ dom(f),

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ 1

M2
f

ω(Mf∥y − x∥x)

where ω(t) = t− ln(1 + t)

(e) Suppose x ∈ dom(f). If ∥y − x∥x < 1
Mf

, then

⟨∇f(y)−∇f(x), y − x⟩ ≤ ∥y − x∥2x
1−Mf∥y − x∥x

(f) Suppose x ∈ dom(f). If ∥y − x∥x < 1
Mf

, then

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ 1

M2
f

w∗(Mf∥y − x∥x)

where w∗(t) = −t− ln(1− t)

Here one can show that w and w∗ are Fenchel duals to each other. We will not prove any of the inequalities
above but interested readers can find the proof of each statement in Nesterov’s book [1]. We have seen
similar inequalities back when we were analyzing first-order methods. Notice that the inequalities above
provide both lower and upper bounds of the quantities of interest. These inequalities are important in our
analysis of the Interior Point Method and damped Newton Method which will show up later in the class.

The following theorem shows stability of the Hessian of a self-concordant function.

Theorem 7. (Theorem 5.1.7 of [1]) Let x ∈ dom(f) and y ∈ W o(x; 1/Mf ), then we have,

(1−Mfr)
2∇2f(x) ⪯ ∇2f(y) ⪯ 1

(1−Mfr)2
∇2f(x)

3 Damped Newton’s Method

In this section, we introduce Damped Newton’s Method which utilizes some of the inequalities of self-
concordant functions introduced above. To this end, we define the local norm of gradient, or the Newton decrement
λf (x) as

λf (x) =
√

(∇f(x))T (∇2f(x))−1)(∇f(x)) = ∥∇f(x)∥∗x
In each iteration of Damped Newton’s Method, we make the following update:

xk+1 = xk − 1

1 +Mfλf (xk)
[∇2f(xk)]

−1∇f(xk)

for k ≥ 0.
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Theorem 8. Given the Damped Newton’s Method update, for a self-concordant function f , we have

f(xk+1) ≤ f(xk)−
1

M2
f

ω(Mfλf (xk))

In other words, Damped Newton’s Method is a descent method.

In previous lectures, we mentioned that the original Newton’s method is not used in practice since its con-
vergence to the minimizer is not guaranteed. Instead, we combine variants of Newton Method’s. Notice
that since ω is a monotonically increasing function, by the theorem above, Damped Newton’s Method de-
scends fast when λf (xk) is large. Therefore, in practice we usually first run Damped Newton’s Method up
to quadratic convergence regime, which we will define later. Once in the quadratic convergence regime, we
will switch to another method with does more aggressive steps than Damped Newton’s Method.

But how can we possibly come up with this step size η = 1
1+Mfλf (xk)

? It turns out to be a consequence of

the inequalities of self-concordant functions. Set η > 0 to be the learning rate, i.e.

xk+1 = xk − η[∇2f(xk)]
−1∇f(xk).

Recall that ω∗(t) = −t − ln(1 − t). Then ω′
∗(t) =

t
1−t . For simplicity of notation, denote g = ∇f(xk) and

H = ∇2f(xk). Notice we have that gTH−1g = λ2
f (xk). Then by (f) from the self-concordant inequalities,

we have:

f(xk+1)− f(xk) ≤ ⟨∇f(x), xk+1 − xk⟩+
1

M2
f

w∗(Mf∥xk+1 − xk∥xk
)

=< g,−ηH−1g > +
1

M2
f

w∗(Mf

√
η(H−1g)THH−1gη)

= −ηgTH−1g +
1

M2
f

w∗(ηMfλ)

Let h(η) = −ηgTH−1g+ 1
M2

f
w∗(ηMfλ). Since h is a convex function of η, we can set its derivative to 0 and

solve for η to obtain the tightest bound:

d

dη
h(η) = 0 ⇒ η =

1

1 +Mfλ

which gives us the update rule of Damped Newton’s Method. This is an example of how properties of
self-concordant functions can motivate algorithm design.

4 General Newton’s Method

For general Newton’s Method, we have the following update rule:

xk+1 = xk − 1

1 + ξk
[∇2f(xk)]

−1∇f(xk)

Variants of Newton’s method use different values of ξk:

• Standard Newton’s Method: ξk = 0

• Damped Newton’s Method: ξk = Mfλf,k

• Intermediate Newton’s Method: ξk =
M2

fλ
2
f,k

1+Mfλf,k
= Mfλf,k

Mfλf,k

1+Mfλf,k
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Notice that the ξk in Intermediate Newton’s Method is smaller than the ξk in damped Newton’s Method.
Hence in practice, we tend to use Intermediate Newton’s Method in the quadratic convergence regime which
is defined as: {k|λk < c} for some threshold value c that depends on other parameters including Mf .

Let’s now describe the local convergence of different variants of the Newton’s Method. Notice that we
can measure the convergence of these schemes in different ways. We can for instance, estimate the rate
of convergence for f(xk) − f(x∗

f ) or for the local norm of the gradient λf (xf ) = ∥∇f(xk)∥∗xk
or the local

distance to the minimum ∥xk−x∗
f∥xk

. Finally, we can look at the distance to the minimum in a fixed metric
r∗(xk) = ∥xk − x∗

f∥x∗
f
. One result is that all these metrics are equivalent as shown in the following theorem:

Theorem 9. (Theorem 5.2.1 of [1]) Suppose λf (x) <
1

Mf
. Then

(1) ω(Mfλf (x)) ≤ M2
f (f(x)− f(x∗

f )) ≤ ω∗(Mfλf (x))

(2) ω′(Mfλf (x)) ≤ Mf∥x− x∗
f∥x ≤ ω′

∗(Mfλf (x))

(3) ω(Mfr∗(x)) ≤ M2
f (f(x)− f(x∗

f )) ≤ ω∗(Mfr∗(x))

where x∗
f is the global minimizer of f .

Next time, we will examine how λf behaves in variants of Newton’s Method and self-concordant barriers.
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