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In this lecture, we identify the correct perspective of analyzing Newton’s method. This allows us to
develop the notion of a self-concordant function which turns out to be very important in interior point
methods for solving constrained optimization problems

Recall the classical analysis of Newton’s Method from the previous method. We assumed that f(x) is:

1. Twice differentiable

2. µ-Strongly Convex: ∇2f(x∗) ≽ µIn

3. M -Lipschitz Hessian: ∀x, y
∥∥∇2f(x)−∇2f(y)

∥∥ ≤ M ∥x− y∥

In this lecture, we will argue that the this type of analysis does not characterize the true properties of
Newton’s method well. To begin, we will introduce the Affine Invariance of Newton’s Method

1 Affine Invariance of Newton’s Method

We will show that Newton’s method is invariant to affine changes in the coordinate system of x. Suppose
we have a twice differentiable function f and a non-singular matrix B ∈ Rn×n. Then we define the function
ϕ(y) = f(By) and introduce the following lemma:

Lemma 1. Suppose the sequence {Xk} and {Yk} are the points generated by Newton’s method on f and ϕ,
respectively and suppose we have an X0 and Y0 = B−1X0. Then Yk = B−1Xk

Thus, we see that the corresponding objective values attained at each iteration are the same for both
functions. This indicates that the trajectory of points selected by Newton’s method is somehow invariant to
affine transformations of the decision variable.

However, this highlights a weakness of the classical analysis presented in the last lecture. The bound
attained in the last lecture is not affine invariant. This implies that the classical analysis does not truly
capture the meaningful features of newton’s method. In order to adapt our analysis, we replace the Lipschitz
smoothness assumption on the Hessian.

2 New Assumption

We wish to impose the condition that the Hessian of f does not change very much. It turns out that this
can be done in an affine-invariant way using the concept of self-concordance. Before we address this concept,
however, we need to generalize our notion of derivatives for multivariable functions. This generalization gives
rise to the concept of a differentiable form:

2.1 Differential Form

Previously in this course, we have made use of the first order and second order derivatives of multi variable
functions. These derivatives take the form of vectors and matrices, respectively. Suppose f ∈ C3 (that is f
is a thrice continuously differentiable function). Then, we have define the third derivative of f in a direction
u, at a point x, as

f ′′′(x)[u] = lim
α→0

∇2f(x+ αu)−∇2f(x)

α
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Using this notation, we see that the third derivative of f , alternatively written as D3f is a multi-dimensional
generalization of matrices, called a tensor. This tensor defines a multi-linear map in the following way:

Dkf(x)[h1, . . . , hk] =
∂k

∂t1∂t2...∂tk
f(x+ t1h1 + ...+ tkhk)

∣∣∣
t1=t2=...=tk=0

This result coincides well with some of the intuition that we have developed in the first and second derivative
cases and gives a general notion of higher-order derivatives in multi variable functions.

2.2 Developing the New Assumption

The previous Lipschitz assumption that we imposed can be expressed using our new differential form notation,
as well as the fact that f is thrice differentiable.∥∥∇2f(x)−∇2f(y)

∥∥ ≤ M ∥x− y∥ ∀x, y ⇒
∥∥D3f(x)[u]

∥∥ ≤ M ∥u∥

Noting that D3f(x)[u] is a matrix, we observe that we can reduce D3f(x)[u] to a scalar by taking the
quadratic form with a vector v. This yields a tri-linear form

⟨D3f(x)[u]v, v⟩ = D3f(x)[u, v, v] ≤ M ∥u∥ ∥v∥2

Observe that the quantity D3f(x)[u, v, v] is a generalized directional derivative and so it is affine equivariant.

However, the right hand side is not affine equivariant. In particular, recalling that ∥x∥ =

√
n∑

i=1

x2
i , this can

be attributed to the fact that each component contributes equally to the norm. However, in order to be
affine equivariant, the contribution of each component needs to be dynamically scaled in conjunction with
our affine transformation. This inspires us to change the right-hand side to be affine equivariant and leads
us to the following assumption: ∣∣D3f(x)[u, u, u]

∣∣ ≤ 2(D2f(x)[u, u])
3
2

and we define this condition to be self-concordance. We note that the scaling constant in the first definition
is absent in this definition and has been generically replaced by 2. It turns out that it is always possible to
scale the a self-concordant function f in a way that it satisfies the definition with the constant 2. The actual
value of 2 is selected out of convenience to ensure that the log function is self-concordant.

3 Properties of self-concordant functions

The definition of self-concordance only involves bounds on differential forms of the type D3f(x)[u, u, u] and
D2f(x)[u, u]. One might wonder whether we should establish conditions involving different u1, u2, u3 instead
of a single u. The following lemma suggests this definition already implies some bound on general tri-linear
forms.

Another key observation is that in the new definition, both sides represent a directional derivative. This
is the key observation to understanding that both sides of the inequality are affine invariant.

Lemma 2. If f is self-concordant, then

|D3f(x)[u1, u2, u3]| ≤ 2Π3
i=1

√
u⊤
i ∇2f(x)ui.

For a formal proof, see the “basic inequality” results in Section 2.2 [1]. Of interest is the following
definition of local norm:

2



Definition 3. Define ∥y∥x ≜
√
y⊤∇2f(x)y. This is also denoted as ∥y∥∇2f(x) where we follow the tradition

that ∥y∥A =
√
y⊤Ax for some positive semi-definite A ∈ Rn×n.

We now present some extremely simple combination rule which can be powerful in proving self-concordance
of complex functions and constructing new self-concordant function from known ones.

Lemma 4 (Combination rules). The following conbmination rules hold for self-concordant functions:

1. Affine substitution. Let F be self-concordant on a open convex set Q ⊂ Rn. x = Ay+ b.y ∈ Rk, x ∈
Rn, then Q+ = {y ∈ Rk | Ay + b ∈ Q} is an open convex set in Rk. The function

F+(y) = F (Ay + b) : Q+ → R

is self-concordant on Q+.

2. Linear combination. Let F1, · · · , Fm be self-concordant functions and αi ≥ 1, i = 1, · · · ,m. Then∑m
i=1 αiFi is also self-concordant.

Proof

Before diving into the formal proof, we present a useful lemma:

Lemma 5. Suppose ai ≥ 1, bi ≥ 0 for i = 1, · · · ,m. We have

m∑
i=1

aib
3
2
i ≤

(
m∑
i=1

aibi

) 3
2

.

To see this is true, by rescaling both sides of the inequalities, it suffices to assume
∑m

i=1 aibi = 1. Then
the lemma translates into an optimization problem:

max
b

m∑
i=1

aib
3
2
i , s.t. bi ≥ 0,

m∑
i=1

aibi = 1.

The objective function is convex, hence the maximum is always attained at the boundary. In particular,
in this case the constraint set is a simplex, and the maximum is obtained at some b⋆ = (0, ·, bj , · · · , 0)
for some j. Now we know bjaj ≤ 1, or bj ≤ 1/aj. Therefore

n∑
i=1

aib
3
2
i ≤ ajb

3
2
j ≤ 1

√
aj

≤ 1.

Proof for Lemma 5 is done.

Now we prove the main statement by showing the following sequence of inequalities hold:∣∣∣∣∣
m∑
i=1

αiD
3Fi(x)[h, h, h]

∣∣∣∣∣
≤

m∑
i=1

αi

∣∣D3Fi(x)[h, h, h]
∣∣ (by triangle inequality)

≤
m∑
i=1

2αi

{
D2Fi(x)[h, h]

} 3
2 (by self-concordance of each Fi(x))

≤2
{
D2F (x)[h, h]

} 3
2 (by Lemma 5)

=2

{
m∑
i=1

αiD
2Fi(x)[h, h]

} 3
2

(since differentiation is a linear operator).
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3. Direct sum. Let Fi(xi) be self-concordant functions. Then F (x1, · · · , xm) =
∑m

i=1 Fi(xi) is also
self-concordant.

With these combination rules in hand, it is actually easy to show the following example of self-concordant
function:
Example 6. The function F (x) = −

∑m
i=1 log(bi − a⊤i x) is self-concordant. One can prove this by showing

that:

• f(y) = − log(y) is self-concordant.

• Affine substitution preserves self-concordance, hence f+
i (x) = − log(bi − a⊤i x) is self-concordant.

• Certain linear combination preserves self-concordance. Here F (x) is a summation of f+
i (x) with ai = 1,

hence F is self-concordant.
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