
EE C227C Convex Optimization and Approximation Lecture 13 - 3/1/2022

Lecture 13: Accelerated Gradient Descent
Lecturer: Jiantao Jiao Scribe: Thomas Fork and Junhao (Bear) Xiong

1 Recap

1.1 Problem Setup

Recall the problem setup of gradient descent from the previous lecture. We consider unconstrained mini-
mization of a function f : Rn → R which is smooth, convex, and has L-Lipschitz gradient with respect to
an arbitrary norm ∥·∥, i.e.

∀x, y ∈ Rn, ∥∇f(x)−∇f(y)∥∗ ≤ L ∥x− y∥ (1)

where |·∥∗ is the dual norm associated with ∥·∥. Furthermore we are given a σ-strongly convex regularizer
R : Rn → R whose gradient ∇R is a bijection. Recall the definition of σ-strongly convex:

DR(x, y) = R(x)−R(y)− ⟨∇R(y), x− y⟩ ≥ σ

2
∥x− y∥2 (2)

It was previously stated that under these assumptions there exists an algorithm, which when provided

1. First order oracle access

2. Access to ∇R and (∇R)−1

3. DR(x
∗, x0) ≤ D2

4. ϵ ≥ 0

produces a point x ∈ Rn such that
f(x) ≤ f(x∗) + ϵ

with T ∼ O
(√

LD2

σϵ

)
queries to the oracle and O (nT ) arithmetic operations.

1.2 Estimate Sequence

Definition 1. A sequence (ϕt, λt, xt)t≥0 with ϕ : Rn → R, λt ∈ [0, 1] and xt ∈ Rn is said to be an estimate
sequence of f : Rn → R if the following properties hold:

1. Lower Bound Property

∀t ≥ 0, x ∈ Rn, ϕt(x) ≤ (1− λt)f(x) + λtϕ0(x)

2. Upper Bound Property

∀x ∈ Rn, ϕt(x) ≥ f(xt) ⇒ min
x∈Rn

ϕt(x) ≥ f(xt)

In the previous lecture we proved the following regarding estimate sequences:

Lemma 2. Under the given problem setup if we have an estimate sequence (ϕt, λt, xt) with ϕ0(x) = f(x0)+
L
2σDR(x, x0) then for some constant C > 0

f(xt) ≤ f(x∗) +
CLD2

σt2︸ ︷︷ ︸
=ϵ

However, it remains to demonstrate how to obtain a valid estimate sequence and obtain this bound.
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1.3 Estimate Sequence Update

The previous lecture proposed the following update for ϕt:

ϕt(x) = (1− γt)ϕt−1(x) + γtLt−1(x) (3a)

Lt−1(x) = f(yt−1) + ⟨∇f(yt−1), x− yt−1⟩ (3b)

without specifying the choice of γt and yt. In this lecture we obtain these by enforcing the lower and upper
bound properties on updates for ϕt, λt and xt to obtain an estimate sequence.

2 Completing The Estimate Sequence Update

We enforce the upper and lower bounds on the proposed estimate sequence update rule, and demonstrate
that ϕt(x) has a closed-form representation. For brevity, henceforth L = σ = 1.

2.1 Enforcing the Lower Bound

We prove this by induction. Consider again the proposed estimate sequence update:

ϕt(x) = (1− γt) ϕt−1(x)︸ ︷︷ ︸
≤(1−λt−1)f(x)+λt−1ϕ0(x)

+γt Lt−1(x)︸ ︷︷ ︸
≤f(x)

(4)

substituting the inequalities (from convexity and enforcing the lower bound property on ϕt−1) and rearrang-
ing terms we have

ϕt(x) ≤ ((1− γt)(1− λt−1) + γt)︸ ︷︷ ︸
(1−λt)

f(x) + (1− γt)λt−1︸ ︷︷ ︸
λt

ϕ0(t) (5)

which is identical in form to applying the lower bound property to ϕt(x). We force the estimate sequence
update to satisfy the lower bound property by setting

λt = (1− γt)λt−1 (6)

In general, we must choose λ0 = 1. With this, we obtain the second equation for λt

λt =
∏

1≤i≤t

(1− γi) (7)

Restrictions on the choice of γt and a specific example will be provided later.

2.2 Representation of ϕt(x)

Next we prove that we can represent ϕt(x) as ϕt(x) = ϕ∗
t + λtDR(x, zt) and perform the proposed update

while keeping the same representation. Here ϕ∗
t is a constant, and by definition the minimum of ϕt, which

occurs at zt, since by definition ϕt(x) = ϕ∗
t + λtDR(x, zt), and DR(x, zt) = 0 when x = zt. We use the

following lemma regarding a property for Bregman divergence:

Lemma 3. (Bregman Shifting) Let z ∈ Rn and R be a suitable convex regularizer such that ∇R is a
bijection.

Then

∀l ∈ Rn,∃z′ ∈ Rn :
DR(x, z) + ⟨x− z, l⟩ = DR(x, z

′)−DR(z, z
′)

l = ∇R(z)−∇R(z′)
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Now we use this to prove closedness of the representation of ϕt(x) by induction
Suppose z0 = x0, λt = (1 − γt)λt−1 and ϕt−1(x) = ϕ∗

t−1 + λt−1DR(x, zt−1) then the proposed estimate
sequence update is (using the inductive hypothesis on ϕt−1(x))

ϕt(x) = (1− γt)
(
ϕ∗
t−1 + λt−1DR(x, zt−1)

)
+ γt [f(yt−1) + ⟨x− yt−1,∇f(yt−1)⟩] (8)

= (1− γt)ϕ
∗
t−1 + λtDR(x, zt−1) + γt ⟨x,∇f(yt−1)⟩︸ ︷︷ ︸

only these terms are not constant

+γt [f(yt−1)− ⟨yt−1,∇f(yt−1)⟩] (9)

focusing on the terms that are not constant and using the Bregman Shifting Lemma with l = γt

λt
∇f(yt−1),

z = zt−1 and z′ = zt:

=λt

(
DR(x, zt−1) +

γt
λt

⟨x,∇f(yt−1)⟩
)

(10)

=λt

(
DR(x, zt)−DR(zt−1, zt) +

〈
zt−1,

γt
λt

∇f(yt−1)

〉)
(11)

=λt (DR(x, zt) + constant) (12)

therefore the representation ϕt(x) = ϕ∗
t + λtDR(x, zt) is a closed form for ϕt(x) under the proposed update

rule. Furthermore, zt is automatically the minimizer of ϕt. All of the terms that are constant are captured
by the updated ϕ∗

t .
The above proof also gives us an update rule for zt from the Bregman Shifting Lemma:

∇R(zt) = ∇R(zt+1)−
γt
λt

∇f(yt−1) (13)

2.3 Enforcing the Upper Bound

It remains to enforce the Upper Bound Property on our estimate sequence. Before proceeding, it is worth
noting our current progress:

• We have a relationship for λt−1 → λt using γt, but no restrictions on γt.

• We have a relationship for zt−1 → zt.

• We don’t yet have update rules for yt and xt.

Recall the update rule

ϕt(x) = (1− γt)
(
ϕ∗
t−1 + λt−1DR(x, zt−1)

)
+ γt [f(yt−1) + ⟨x− yt−1,∇f(yt−1)⟩] (14)

We can remove ϕ∗
t−1 using the inductive hypothesis of the upper bound property, and then invoke strong

convexity:

ϕt(x) ≥ (1− γt)f(xt−1)︸ ︷︷ ︸
≥(1−γt)(f(yt−1)+⟨xt−1−yt−1,∇f(yt−1⟩)

+λtDR(x, zt−1) + γt (f(yt−1) + ⟨x− yt−1,∇f(yt−1)⟩) (15)

= f(yt−1) + λtDR(x, zt−1) + γt ⟨x− zt−1,∇f(yt−1)⟩+

〈
∇f(yt−1), (1− γt)xt−1 + γtzt−1 − yt−1︸ ︷︷ ︸

We set this to 0

〉
(16)

where we add and subtract the term γt ⟨x− zt−1,∇f(yt−1)⟩. Observe that setting

yt−1 = (1− γt)xt−1 + γtzt−1 (17)
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brings the underbraced term to 0. This choice is not immediately obvious, however it leaves us with the
form

ϕt(x) ≥ f(yt−1) + λtDR(x, zt−1) + γt ⟨x− zt−1,∇f(yt−1)⟩ (18)

or using 1-strong convexity of R

ϕt(x) ≥ f(yt−1) + γt ⟨x− zt−1,∇f(yt−1)⟩+
λt

2
∥x− zt−1∥2 (19)

which is very close to the L smoothness property enforced on f .
Define x̃− yt−1 = γt(x− zt−1). Then:

ϕt(x) ≥ f(yt−1) + ⟨x̃− yt−1,∇f(yt−1)⟩+
λt

2γ2
t

∥x̃− yt−1∥2 (20)

if we enforce the restriction (intuitively, this also tells us λt can’t be too small)

λt

γ2
t

≥ 1 (21)

then

ϕt(x) ≥ f(yt−1) + ⟨x̃− yt−1,∇f(yt−1)⟩+
1

2
∥x̃− yt−1∥2 ≥ f(x̃) (22)

i.e. ϕt(x) is lower bounded by an upper bound on f . The best xt we can choose for this upper bound is

xt ≜ argmin
x̃

⟨x̃,∇f(yt−1)⟩+
1

2
∥x̃− yt−1∥2 (23)

This provides us with update rules for yt and xt, and a limit on our choice of γt, all of which now satisfy
the lower and upper bound propertyes for a valid estimate sequence.

3 The Accelerated Gradient Algorithm

Using z0 = x0, λ0 = 1, λt

γ2
t
≥ 1 and λt =

∏
1≤i≤t(1− γt) we have

yt−1 = (1− γt)xt−1 + γtzt−1 (24a)

∇R(zt) = ∇R(zt−1)−
γt
λt

∇f(yt−1) (24b)

xt = argmin
x̃

⟨x̃,∇f(yt−1)⟩+
1

2
∥x̃− yt−1∥2 (24c)

3.1 Observations

Notice that yt is a linear combination of xt and zt, each of which are updated separately: xt follows the
update of gradient descent wheras zt follows the update of mirror descent. We have not yet shown that we
can pick γt such that λt ≈ 1

t2 so we have not yet shown the desired convergence rate of

f(xt) ≤ f∗ +O

(
LD2

σt2

)
(25)
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3.2 Choosing γt

We previously made the assumption λt ≥ γ2
t , which limits our ability to make λt decay. Consider the choice

of γt from [1, Ch. 8.5.1]:

γt =

{
0 t ∈ {0, 1, 2, 3}
2
t otherwise

(26)

It follows that

λt =

{
1 t ∈ {0, 1, 2, 3}
6

t(t−1) otherwise
(27)

Since 6
t(t−1) ≥

4
t2 = γ2 this is a valid sequence of γt and λt

Having found a valid sequence of λt this completes the derivation and performance bound of the accel-
erated gradient algorithm.
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