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Lecture 12: Acceleration of Gradient Methods
Lecturer: Jiantao Jiao Scribe: Yigit Efe Erginbas, Simon Xu

In this lecture, we present Nesterov’s accelerated gradient descent algorithm. This algorithm can be
viewed as a hybrid of the previously introduced gradient descent and mirror descent methods. For further
reference, see [1] (Chapter 8).

1 The Problem Setup

First, let us recall the conditions on acceleration. Given the optimization problem,

min
x∈Rn

f(x) (1)

where f(x) is convex and its gradients are L-Lipschitz continuous. Here, we work with a general pair of
dual norms ∥ · ∥ and ∥ · ∥∗. Thus, we use the notion of L-Lipschitz continuous gradient with the following
definiton.

Definition 1. A function f : Rn → R is said to have L-Lipschitz continuous gradients with respect to a
norm ∥ · ∥ if for all x, y ∈ Rn,

∥∇f(x)−∇f(y)∥∗ ≤ L∥x− y∥ (2)

where ∥ · ∥∗ denotes the dual norm of ∥ · ∥.

For convex functions, this condition is the same as L-smoothness:

f(y) ≤ f(x) + ⟨y − x,∇f(x)⟩+ L

2
∥x− y∥2, ∀x, y ∈ Rn (3)

Furthermore, we let R : Rn −→ R to be σ-strongly convex regularizer with respect to a norm ∥.∥. In
other words, the Bregman divergence DR(x, y) of R satisfies

DR(x, y) = R(x)−R(y)− ⟨∇R(y), x− y⟩ ≥ σ

2
∥x− y∥2 (4)

2 Main result on accelerated gradient descent

Theorem 2. (Existence of an accelerated algorithm) Given the conditions

1. a first-order oracle access to a convex function f(x)

2. a number L such that ∇f(x) is L-Lipschitz continuous with respect to a norm ∥ · ∥

3. a σ-strongly convex regularizer R

4. an oracle access to the gradient map (∇R) and its inverse (∇R)−1 (given that they are bijections)

5. an initial point x0 such that DR(x
∗, x0) ≤ D2

6. an ϵ > 0,

there exists an algorithm that produces a point x ∈ Rn such that f(x) ≤ f(x∗)+ ϵ. In addition, the algorithm

makes T = O(
√

LD2

σϵ ) queries to the oracle and performs O(nT ) arithmetic operations.
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2.1 Intuition

From Theorem 2, we start with making several observations:

• The problem dimension n does not appear in the convergence speed (dimension-free)

• The standard gradient descent algorithm requires T = O
(

LD2

σϵ

)
iterations – exactly the square of what

the above theorem achieves.

Now, we will further explore an intuitive way to reason about such an algorithm. In previous lectures we
have observed that the gradient descent behaves better when we have large gradients, while mirror descent is
better when we operate with small gradients. Therefore, in order to have an accelerated descent algorithm,
we would prefer an algorithm that behaves like gradient descent for large gradients, and behaves like mirror
descent for small gradients.

To further emphasise our point, let us consider the following example. For the sake of illustration, define
a value ϵ such that 2ϵ is equal to the f(x0) − f(x∗). Our goal is to achieve ϵ accuracy f(xt) − f(x∗) ≤ ϵ.
Now, consider these two cases separately: either ∥∇f(xt)∥∗ ≥ K or ∥∇f(xt)∥∗ ≤ K for all t.

In the first case (∥∇f(x)∥∗ ≥ K), we can imagine applying a gradient descent algorithm, such that

f(xt+1)− f(xt) ≤
1

2L
∥∇f(xt)∥2∗ (5)

for the choice of step size η = 1/L. Recall that in this case the number of required steps by gradient descent
algorithm is

T1 :=
Lϵ

K2
(6)

Similarly, in the second case (∥∇f(x)∥∗ ≤ K), an application of the mirror descent algorithm (for a
1-strongly convex regularizer) requires

T2 :=
K2D2

ϵ2
(7)

for a K-Lipschitz convex function f .

As we can see from previous exposition, T1 is decreasing in K while T2 is increasing in K. If we were to
determine a threshold between two regimes, we would solve T1 = T2 for K. Using the definitions from Eq.
(6) and (7), we obtain the threshold

Kth =

(
Lϵ3

D2

)1/4

(8)

Therefore, if K ≥ Kth, we would prefer to have ∥∇f(x)∥∗ ≥ K and use gradient descent. On the other
hand, if K ≤ Kth, we would prefer to have ∥∇f(x)∥∗ ≤ K and use mirror descent. Hence, given an ability
to choose the regime in which we will operate, the number of required steps would be at most

T1(Kth) = T2(Kth) =

√
LD2

ϵ
(9)

As we can see, this iteration complexity exactly matches with the iteration complexity claimed for ac-
celerated gradient descent (by setting σ = 1). While this thought experiment may help motivate why using
a mixture of gradient descent and mirror descent can help accelerate convergence, the reality is that this
thought experiment does not work in practice: one iteration of gradient descent can break down another
iteration of mirror descent, and vice versa, causing any progress to be lost. Hence, we require a more rigorous
analysis and understanding of accelerated gradient descent.
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2.2 Linear Coupling

Linear coupling is the solution to this problem in a high level. It is a method that will allow us to accelerate
gradient descent by combining it with mirror descent. With the idea of linear coupling, we will be able to
construct an optimal balance between gradient descent and mirror descent algorithms.

Starting from an initial point x0, a duplicate of x0 is made, along with a point z0. Next, y0 is produced as
a linear combination x0 and z0. On the next iteration, x1 is produced from an iteration of gradient descent,
while z1 is produced from an iteration of mirror descent. y1 is then produced from x1 and z1, and the process
continues with x2, z2, y2, and so on. Below is a figure that illustrates this process.

Figure 1: A diagram illustrating linear coupling.

The linear coupling equation between the iterations are given by:

yt−1 = (1− γt)xt−1 + γtzt−1 (10)

xt ← apply a GD step to yt−1 (11)

zt ← apply a MD step to yt−1 (12)

3 Proof strategy: estimate sequences

In our proof of Theorem 2, we first start by introducing the concept of estimate sequence and show how we
can use an estimate sequence to prove our result on accelerated gradient descent. Then, in the process of
proving the existence of estimate sequences, we derive an accelerated gradient descent algorithm, which then
turns out to imply Theorem 2.

A crucial notion used in deriving the accelerated gradient descent algorithm is that of an estimate
sequence.

Definition 3 (Estimate Sequence). A sequence (ϕt, λt, xt)t≥0 with function ϕt : Rn → R, value λt ∈ [0, 1],
and vector xt ∈ Rn (for all t ≥ 0) is said to be an estimate sequence for a function f : Rn → R if it satisfies
the following properties:

1. Lower bound: For all t ≥ 0 and for all x ∈ Rn,

ϕt(x) ≤ (1− λt)f(x) + λtϕ0(x)

2. Upper bound: For all t ≥ 0 and for all x ∈ Rn,

f(xt) ≤ ϕt(x)

Intuitively, we can think of the sequence (xt)t≥0 as converging to a minimizer of f . The functions
(ϕt)t≥0 serve as approximations to f , which provide tighter and tighter (as t increases) bounds on the gap
f(xt) − f(x∗). More precisely, condition (1) says that ϕt(x) is an approximate lower bound to f(x) and
condition (2) says that the minimum value of ϕt is above f(xt).
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To illustrate this definition, suppose that λt = 0 for some t. Then, the condition (1) implies that
ϕt(x) ≤ f(x) for all x ∈ Rn. Choosing x = x∗ and combining with the condition (2) we obtain

f(xt) ≤ ϕt(x
∗) ≤ f(x∗) (13)

Since x∗ is the minimizer of f by definition, this inequality implies that xt is an optimal solution. Thus,
even though achieving λt = 0 may be too ambitious, we aim for obtaining an estimate sequence that will
guarantee λt → 0 as t increases. In fact, as we will show later, the accelerated gradient method constructs a
sequence λt which goes to zero as 1/t2. Formally, we state the following theorem and defer its proof to our
next lecture.

Theorem 4 (Existence of optimal estimate sequences). For every convex, L-smooth (with respect to
norm ∥ · ∥) function f : Rn → R, for every σ-strongly convex regularizer R (with respect to the same norm
∥ · ∥), and for every x0 ∈ Rn, there exists an estimate sequence (ϕt, λt, xt)t≥0 with

ϕ0(x) := f(x0) +
L

σ
DR(x, x0)

and
λt ≤

c

t2

for some absolute constant c > 0.

We leave the proof of Theorem 4 for our next lecture, and we continue with a lemma that will enable us
to conclude our main result Theorem 2.

Lemma 5. Under the problem setting described in Section 1, an estimate sequence (ϕt, λt, xt)t≥0 with

ϕ0(x) := f(x0) +
L

σ
DR(x, x0)

and
λt ≤

c

t2

for some absolute constant c > 0, satisfies

f(xt) ≤ f(x∗) +
2cLD2

σt2

Proof For an estimate sequence (ϕt, λt, xt)t≥0 that satisfies the given properties, we obtain
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f(xt)
(a)

≤ ϕt(x
∗) (14)

(b)

≤ (1− λt)f(x
∗) + λtϕ0(x

∗) (15)

(c)
= (1− λt)f(x

∗) + λtf(x0) + λt
L

σ
DR(x

∗, x0) (16)

= f(x∗) + λt(f(x0)− f(x∗)) + λt
L

σ
DR(x

∗, x0) (17)

(d)

≤ f(x∗) + λt

(
⟨xo − x∗,∇f(x∗)⟩+ L

2
∥xo − x∗∥2

)
+ λt

L

σ
DR(x

∗, x0) (18)

= f(x∗) + λtL

(
1

2
∥xo − x∗∥2 + 1

σ
DR(x

∗, x0)

)
(19)

(e)

≤ f(x∗) + λtL

(
1

σ
DR(x

∗, x0) +
1

σ
DR(x

∗, x0)

)
(20)

= f(x∗) + λt
2L

σ
DR(x

∗, x0) (21)

(f)

≤ f(x∗) + λt
2LD2

σ
(22)

(g)

≤ f(x∗) +
2cLD2

σt2
(23)

Here, (a) uses the upper bound property of estimate sequences, (b) uses the lower bound property of estimate
sequences, (c) uses the definition of ϕ0(x

∗), (d) uses L-smoothness of f , (e) uses σ-strong convexity of R, (f)
uses the condition DR(x

∗, x0) ≤ D2, and (g) uses the property λt ≤ c/t2.

Thus, given an estimate sequence that satisfies the conditions in Lemma 5, it is enough to take t =

O

(√
LD2

σϵ

)
to make sure that f(xt) − f(x∗) ≤ ϵ. Next, we need to prove that such an estimate sequence

(ϕt, λt, xt)t≥0 for f exists and can be efficiently computed using a first order oracle to f and R only. As we
will see, the proof of Theorem 4 will also provide us an efficient algorithm to compute estimate sequences.

4 Construction of an estimate sequence

To start, we make a simplifying assumption that L = 1 and σ = 1 without loss of generality. The construction
of the estimate sequence is iterative. Let x0 ∈ Rn be an arbitrary initial point. We set

ϕ0(x) := f(x0) +DR(x, x0) and λ0 = 1 (24)

Thus, the lower bound condition in Definition 3 is trivially satisfied. The upper bound condition follows
from noting that

ϕ∗
0 = min

x
ϕ0(x) = f(x0) (25)

Thus,
ϕ0(x) = ϕ∗

0 +DR(x, x0)

The construction of subsequent elements of the estimate sequence is inductive. Suppose we are given
(ϕt−1, λt−1, xt−1). Then ϕt will be a convex combination of ϕt−1 and a linear lower bound Lt−1 to f at a
carefully chosen point yt−1 ∈ Rn. More precisely, we set

Lt−1(x) := f(yt−1) + ⟨x− yt−1,∇f(yt−1)⟩ (26)

5



and we set the new estimate to be

ϕt(x) := (1− γt)ϕt−1(x) + γtLt−1(x) (27)

for some γt ∈ [0, 1] determined later.
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