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1 Level Method

In this lecture, we will give the proof for the level method. Given search points x1, x2, · · · , xi, we can
construct a sequence of models where the i-th model is given by a piecewise linear function

fi(x) = max
1≤j≤i

(f(xj) + ⟨∇f(xj), x− xj⟩) . (1)

Here, f is a convex function and the terms inside the max are the global lower bound of the f(x). Hence,
fi(x) is a global lower bound of the function f . Let G be a convex compact set. We consider a sequence of
upper bounds and lower bounds.

f−
i = min

x∈G
fi(x), f+

i = min
1≤j≤i

f(xj), and ∆i = f+
i − f−

i . (2)

Following the construction, we have the monotonicity

f−
1 ≤ f−

2 ≤ · · · ≤ f∗, f+
1 ≥ f+

2 ≥ · · · ≥ f∗, and ∆1 ≥ ∆2 ≥ · · · ≥ 0. (3)

We have the nondecreasing sequence of f−
i because we are adding another piecewise linear function to fi(x).

As a result, the global lower bound does not decrease as more lower bound is included. On the other hand,
f+
i is a nonincreasing sequence because we look for the best point we have searched at each f+

i and we have
more points as the iterate number increases. Consequently, ∆i is a nonincreasing sequence. The algorithm
for the level method is given as follows.

ALGORITHM 1: Level Method

for i = 2, 3, · · · do
Solve minx∈G fi(x) and get f−

i .
Form the level li = (1− λ)f−

i + λf+
i .

Project xi+1 = ΠQi
(xi) onto the convex set Qi = {x ∈ G|fi(x) ≤ li}.

end for

Remarks.

(i) The level li lies between the lower bound and the upper bound. The upper bound is the best perfor-
mance one can ever achieve until the given step. Therefore, the search points in the previous steps will
not be in the set Qi since li < f+

i .

(ii) Note that Qi is a convex set because level set of any convex function is a convex set and intersection
of convex sets is also a convex set.

(iii) In addition, the projection onto a convex set is not necessarily easy. However, Qi has a desirable
structure because we add piecewise linear constraints only. The number of such constraints increases
significantly as the iteration number increases. Thus, it might be desirable to drop some of the con-
straints to allow for an easier projection operation. This idea leads to the truncated level method.
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(iv) Furthermore, if Qi is an empty set, it implies that we reached the desired level of accuracy.

(v) Last but not at least, choosing λ close to 0 or 1 leads to quite slow convergence. Therefore, λ should
be chosen carefully in (0, 1).

Interpretations. We define parametrized points as

x(d) = argmin
x∈G

(
fi(x) +

d

2
∥x− xi∥2

)
. (4)

Then, we will show that the xi generated by the level method is the parametrized point for some d.
When d = 0, we have fi(x(d)) = minx∈G fi(x) = f−

i . When d → ∞, we claim x(d) → xi and fi(x(d)) →
fi(xi) = f(xi) ≥ f+

i . Therefore, by continuity, there exists d so that l(d) = li. Note that we have
fi(xi) = f(xi) because fi(x) ≥ f(xi) by the definition of fi(x) and fi(x) ≤ f(x) by the convexity of the
function f .

We also claim that x(d) is the closest point to xi in the set B = {x ∈ G|fi(x) ≤ fi(x(d))}. We denote
l(d) = fi(x(d)). Note that x(d) ∈ B trivially. We want to show that whether there are any point in the set
that is closest to xi but not x(d). It follows the argument below.

1. If xi ∈ B, then fi(xi) ≤ fi(x(d)) by the construction of B. At the same time, the definition of x(d)

implies that fi(x(d)) ≤ fi(x(d)) +
d
2 ∥x(d)− xi∥2 ≤ fi(xi). Therefore, fi(xi) = fi(x(d)) and x(d) = xi.

2. If xi /∈ B, then it equivalently says that we can not find y ∈ B so that ∥y − xi∥ < ∥x(d)− xi∥ and

fi(y) ≤ fi(x(d)). If so, these two inequalities yield fi(y) +
d
2 ∥y − xi∥2 < fi(x(d)) +

d
2 ∥x(d)− xi∥2.

Then, x(d) is not the minimizer of the objective function in the defining equation, which is a contra-
diction.

2 Theorem Statement and Proof

Theorem 1 (Theorem 8.2.1 [1] ). Assume supx,y∈G ∥x−y∥2 ≤ D. The function f is convex and L-Lipschitz.
Then,

T >
1

(1− λ)2λ(2− λ)

L2D2

ϵ2
⇒ ∆T ≤ ϵ (5)

Before the proof, we can interpret the results of the theorem.

(i) Whenever the parameter λ is close to 0 or 1, the number of required iterations for ϵ optimality gap
explodes.

(ii) In addition, the analytical complexity T := Ω
(

L2D2

ϵ2

)
is at the same order as subgradient method and

the mirror descent discussed in the earlier lectures.

(iii) In fact, this bound is tight for non-smooth minimization in the black box theory. Despite achieving
the same worst-case result in the subgradient method, the level method converges much faster than
subgradient method in the average case. For instance, the level method converges much faster than
subgradient method for the MAXQUAD objective function.

(iv) Since the analysis of average complexity is challenging, the gap between the theory and practice is
closed by trying out all the possible appropriate algorithms to solve the problems.

Proof
Let’s define a set of intervals I = {1, 2, . . . , T}. The definition of intervals are shown in Figure 1. I1

includes every iterates such that ∆i ≤ ∆T

1−λ . Note that we might not need to define T intervals necessarily
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as shown in the Figure 1 and k ≥ 1 intervals might be sufficient. In addition, i(s) denotes the right-most
point in the interval Is. Formally,

i(s) = argmin

{
i|∆i ≥

∆i(s−1)

1− λ

}
(6)

Note that i(1) = T and ∆i(1) = ∆T .

Figure 1: Illustration of Intervals

Key Observation:

∩i∈IsQi ∋ Us where Us
∆
= argmin

x∈G
fi(s)(x) (7)

In words, the above equation implies that there exists a point Us in every Qi where i is in the index set that
belongs to Is. In addition, Us is the global minimizer of the fi(s)(x).

First, we can prove the correctness of the observation. For i ∈ Is, we have i ≤ i(s) and

fi(Us) ≤ fi(s)(Us) = f−
i(s) = f+

i(s) −∆i(s) (8)

The above inequality holds because i ≤ i(s) and when we increase the index, we increase the global lower
bound of the function f . The equalities follows from the definitions because Us is the global minimizer of
the fi(s) Therefore, we obtain

f+
i(s) −∆i(s) ≤ f+

i −∆i(s) ≤ f+
i − (1− λ)∆i = li (9)

The first inequality is due to the fact that f+
i ≥ f+

i(s). The second inequality follows from the definition of

the points within the interval, i.e. ∆i(s) ≥ (1−λ)∆i,∀i ∈ Is and the last equality follows from the definition
of ∆i and li. We obtained the inequality fi(Us) ≤ li,∀i ∈ Is. As a result, Us ∈ ∩i∈IsQi.

The key idea of the proof is to upper bound Ns
∆
= |Is|. Mainly, we want to show that Ns is not large

and the number of elements decreases exponentially fast. Let i(s): last point in Is and j(s): first point in
Is. Since we know Us ∈ Qi and xi+1 is projection of xi onto Qi, we can utilize inverse triangle inequality.
The idea is we have an obtuse angle between the vectors as depicted in the Figure 2.

Figure 2: Geometry of the Projection onto Compact Convex Set
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Specifically, we have the following since Us ∈ Qi and xi+1 is the projection point of xi.

∥xi+1 − Us∥22 ≤ ∥xi − Us∥22 − ∥xi − xi+1∥22 (10)

We can use telescoping sum argument to obtain the following.∑
i∈Is

∥xi − xi+1∥22 ≤ ∥xj(s) − Us∥22 − ∥xi(s) − Us∥22 ≤ ∥xj(s) − Us∥22 ≤ D2 (11)

where the second inequality follows from the fact that ∥xi(s) − Us∥22 ≥ 0.
Next, we can use Lipschitz property of the function f . If the improvement in the function value is large,

we know that distance between the successive iterates cannot be small. We will utilize this property to
conclude the proof. We know that the objective value fi improves at least (1− λ)∆i from xi to xi+1 by the
definition li. Since the function f is L-Lipschitz and fi is piecewise linear functions of f , fi is L-Lipschitz.
Specifically, the gradient of the fi(x) is upper bounded by the maximum of ∇f(xj) which are upper bounded
by L. Hence, we have

∥xi − xi+1∥ ≥ (1− λ)∆i

L
≥

(1− λ)∆i(s)

L
(12)

The inequality (11) and the Lipschitz condition (12) implies the movement between the successive iterates
cannot be too large, but cannot be too small either. Combining the last two inequalities, we obtain

Ns ≤
1

(1− λ)2
L2D2

∆2
i(s)

(13)

By the definition of the intervals, we observe

∆i(s) >
∆i(1)

(1− λ)s−1
(14)

Suppose for contradiction ∆T > ϵ. Then, by using the upper bound on the Ns, we obtain

Ns ≤
1

(1− λ)2
L2D2(1− λ)2(s−1)

ϵ2
(15)

Consequently,

T =
∑
s≥1

Ns ≤
∑
s≥1

1

(1− λ)2
L2D2(1− λ)2(s−1)

ϵ2
≤ 1

(1− λ)2λ(2− λ)

L2D2

ϵ2
(16)

In the last inequality, we use the fact that
∑

s≥1((1−λ)2)s−1 is a geometric series with |(1−λ)2| < 1 and we

use the infinite geometric series sum formula. As a result, whenever T > 1
(1−λ)2λ(2−λ)

L2D2

ϵ2 , we must have

∆T ≤ ϵ.

In the next lecture, we will talk about the acceleration of gradient descent.
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