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Lecture 10: Adaptive Mirror Descent and Bundle Method
Lecturer: Jiantao Jiao Scribe: Jiaqi Yang, Nikhil Deveshwar

1 Adaptive Mirror Descent

Algorithm 1 Adaptive Mirror Descent

Require: convex regularizar: ψt
θ0 = 0
for t = 0, 1, ..., T-1 do

wt ← ∇ψ∗
t (θ

t)
observe gt

θt+1 ← θt − ηgt

Lemma 1. Assume ψ∗
t+1(θ

t − ηgt) ≤ ψt(θt)− η⟨wt, gt⟩ then,

T−1∑
t=0

⟨gt, wt − u⟩ ≤ ψ∗
0(θ

0) + ψT (u)

η
(1)

Proof For any u:

⟨u, θT ⟩ − ψT (u) ≤ ψ∗
T (θ

T ) (2)

≤ ψ∗
0(θ

0) +

T−1∑
t=0

(ψ∗
t+1(θ

t+1)− ψ∗
t (θ

t)) (3)

≤ ψ∗
0(θ

0) +
T−1∑
t=0

(−η⟨wt, gt⟩) (4)

⟨u, θT ⟩+ η

T−1∑
t=0

⟨wt, gt⟩ ≤ ψ∗
0(θ

0) + ψT (u) (5)

where

θT =

T−1∑
t=0

−ηgt (6)

Expression (4) matches our original expression from earlier:
∑T−1
t=0 (−η⟨wt, gt⟩)
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Now for the case of a particular convex regularizer: ψt we can define the following terms:

βti =

t−1∑
s=0

log(1− ηgsi ) (7)

ψt(u) ≜ ψ(u) + ⟨u, θt − βt⟩ (8)

ψ(u) =

t−1∑
s=0

ui log ui (9)

where ⟨u, θt − βt⟩ is a correction term.
Aside: Given ψ(u) =

∑
i ui log ui with ui ≥ 0 and

∑
ui = 1, its convex conjugate is ψ∗(x) = log(

∑
i exp(xi)).

The convexity of this expression can be established by ”Convexity calculus” with no computations:

s > 0⇒ ln(s) = min
z

[s ∗ exp{z} − z − 1] (10)

⇒ ln

(∑
i

exp{xi}

)
= min

z

[∑
i

exp{z} exp{xi} − z − 1
]

(11)

The top line is the straight forward computation, while the bottom term in the minimization objective
function is a convex function of [x; z].
Using the definition of convex conjugate:

ψ∗
t (x) = ψ∗(x+ (βt − θt)) (12)

ψ∗
t+1(θ

t+1) = ψ∗(θt+1 + (βt+1 − θt+1)) (13)

= ψ∗(βt+1) (14)

This also implies ψ∗
t (θ

t) = ψ∗(βt)
Using convex conjugate of entropy function,

ψ∗(βt+1) = log

(
n∑
i=1

exp
(
βt+1
i

))
(15)

= log

(
n∑
i=1

exp
(
βti + log

(
1− ηgti

)))
(16)

= log

(
n∑
i=1

exp
(
βti
)
(1− ηgti)

)
(17)

= log

(
n∑
i=1

exp
(
βti
)
− η

n∑
i=1

gti exp(βi)

)
(18)

≤ ψ∗(βt)− η
∑n
i=1 g

t
i exp(β

t
i )∑n

i=1 exp(β
t
i )

(19)

= ψ∗(βt)− η⟨wt, gt⟩ (20)

Here,
exp(βt

i)∑n
i=1 exp(βt

i)
→ ∇ψ∗(βt) (gradient term wt). This gives us the left side expression from Lemma 1.

Note that we have used inequality log(x− y) ≤ log(x)− y
x .

Now, we evaluate right side original expression from Lemma 1:
ψ∗

0 (θ
0)+ψT (u)
η

ψ∗
0(θ

0) = log

(
n∑
i=1

exp(0)

)
= log(n) (21)

ψT (u) = ψ(u) + ⟨u, θT − βT ⟩ (22)
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Where

θT = −η
T−1∑
s=0

gs (23)

θT − βT =

T−1∑
s=0

(−ηgs − log(1− ηgs)) (24)

and where the i-th entry ≤ η2 |gsi |
2
by applying the inequality −x− x2 ≤ ln(1− x) for |x| ≤ 1/2.

2 Bundle Method

2.1 Kelley’s Method

Let f(x) be a convex (non-smooth) function, {xi : i = 1, 2, · · · } be a sequence of points. We consider the
task of finding the minimum f⋆ = minx∈G f(x), where G is a convex compact set of interest. The bundle is
defined to be a sequence of affine forms, each of which is a global lower bound of the function f(·). Formally,
it is the right-hand side of the following equation:

f(x) ≥ f(xj) + ⟨∇f(xj), x− xj⟩. (25)

Because the affine forms serve as global lower bounds of the function, so does their maximum. Therefore,
Kelley’s method is proposed to iteratively compute the minimum f⋆, as detailed in Algorithm 2.

Algorithm 2 Kelley’s Method

Require: initial point x1
for i← 1, 2, · · · do

Let xi+1 ∈ argminx∈G fi(x), where

fi(x) = max
1≤j≤i

{f(xj) + ⟨∇f(xj), x− xj⟩}. (26)

The intuition behind Kelley’s method is that, by choosing the maximum over the lower bounds of the
function, we could discover a new point that hopefully has the “highest uncertainty”, and thus we query at
that point in the next iteration, with the hope that the new lower bound at that point could give us more
information about the landscape of the function, which helps us to find the minimum.

Unfortunately, this idea does not work even for mild function classes such as the convex Lipschitz func-
tions. Specifically, to find x such that f(x) ≤ f⋆ + ϵ, one may need Ω(1/ϵ(n+1)/2) iterations, where n is
the dimension. Here, we intuitively explain why the Kelley’s method could be slow. This is because the
argmin over fi(·) operation in the Kelley’s method are too brittle, because fi(·) is a maximum of affine
forms, which is piece-wise linear, and as a result, there could be big jump in the argmin operation with a
slightest perturbation.

We conclude this section with the following example illustrating why Kelley’s method would be slow.
Example 2 ([1], Example 8.1). Consider optimizing the convex function

f(x) = max{0,−1 + 2ε+ ∥x∥}, (27)

∂f(x) =


{0}, ∥x∥ < 1− 2ε,

{ x
∥x∥}, ∥x∥ > 1− 2ε,

conv{0, x
∥x∥}, ∥x∥ = 1− 2ε,

(28)
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over the unit ball G = {x ∈ Rn : ∥x∥2 ≤ 1} using Kelley’s method with initial point x1 = 0. The goal is to
find an ε-optimal solution, so our stopping criterion is f(xi+1)− fi(xi+1) ≤ ε.

After the first iteration, we have f1 = 0, so x2 ∈ argminx∈G 0 could be arbitrary. Suppose it returns
a solution with ∥x2∥ = 1. Then f(x2) = 2ε and f2(x) = max{f1(x), 2ε + ⟨x2, x − x2⟩} = max{0,−1 +
2ε + ⟨x2, x⟩}. Note that f2(x) is non-zero only on a sphere cap S2 = {x ∈ G : ⟨x, x2⟩ > 1 − 2ε}, so
x3 ∈ argminx∈G f2(x) = G \ S2. Subsequently, we have

xi+1 ∈ argmin
x∈G

fi(x) = G \ (
i⋃

j=2

Sj). (29)

As a result, the algorithm would not stop until G \ (
⋃i
j=2 Sj) is an empty set. Let νn = Voln−1(∂G), where

Voln(·) denotes the volume in Rn. We note that

Voln−1(∂G) = νn = 2νn−1

∫ 1

0

(1− t2)
n−1
2 dt ≥ νn−1

∫ 1

0

2t(1− t2)
n−1
2 dt ≥ 2

n+ 1
νn−1, (30)

Voln−1(∂Si) = νn−1

∫ 1

1−2ε

(1− t2)
n−1
2 dt

≤ νn−1(1− (1− 2ε)2)
n−1
2 (1− (1− 2ε)) ≤ νn−1(4ε− 4ε2)

n+1
2 , (31)

so there would be at least

Voln−1(∂G)

Voln−1(∂Si)
≥ 2

n+ 1
(
1

4ε
)

n+1
2 . (32)

2.2 Level Method

We fix the instability issue in Kelley’s method by adding a quadratic regularizer, which borrows insight from
the mirror descent algorithm. Specifically, we replace the rule of choosing xi+1 in Algorithm 2 with the
following equation:

xi+1 = argmin
G
{fi(x) +

di
2

∥∥x− x+i ∥∥2}, (33)

where x+i may not be xi. We call di the prox weight and x+i the prox center. The objective in (33) is similar
to the mirror descent. Indeed, in mirror descent, di is like a constant. Furthermore, we observe that when
di = 0 it reduces to the Kelley’s method. When di → +∞ the point xi does not move. Therefore, we need
to cleverly choose di to seek a balance. Unfortunately, we do not really know how to choose di.

Level method is a smart way of choosing di. In fact, it somehow eliminates the need of explicitly choosing
di. This is achieved by implicit mapping the parameter space of di to another parameter space. Note that
this is in analogous to how the Lagrange’s method of multipliers solves the constrained optimization problem.
Indeed, the optimal Lagrangian multiplier can be seen as an implicit mapping from the constraints to the
multipliers, which circumvents the need of explicitly choosing the multiplier.

Same story here. Level method implicitly sets the parameters di. Here, we formally describe the level
method in Algorithm 3.

We make the following observations to the level method.

Lemma 3. 1. f−1 ≤ f
−
2 ≤ · · · ≤ f⋆.

2. f+1 ≥ f
+
2 ≥ · · · ≥ f⋆.

3. Define ∆i = f+i − f
−
i . Then ∆1 ≥ ∆2 ≥ · · · ≥ 0.

Proof
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Algorithm 3 Level Method

Require: initial point x1
for i← 1, 2, · · · do

Solve f−i = minx∈G fi(x), where fi(x) is defined in (26). Let f+i = min1≤j≤i f(x)
Form the level ℓi = (1− λ)f−i + λf+i
Set xi+1 = ΠQi

(xi), where Qi = {x ∈ G | fi(x) ≤ ℓi}.

1. It is clear that f−i ≤ f⋆ because fi(x) ≤ f(x) for every x ∈ G. We have f−i ≤ f
−
i+1 because fi+1(·) has

more terms to maximize over than fi(·) by (26).

2. f+i ≥ f⋆ because f⋆ is global minimum. f+i ≥ f+i+1 because f+i+1 has more terms to minimize over,

compared to f+i .

3. It follows immediately from parts 1 and 2.

Finally, we emphasize that the projection operator ΠQi
in Algorithm 3 can be solved efficiently when

G is well-shaped. For example, when G is a polytope, the projection essentially finds a point in Qi that is
closest in Euclidean distance to xi, which reduces to applying convex and linear constraints to a polytope
and solving a convex optimization problem.
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