
EE C227C Convex Optimization and Approximation Lecture 8 - 02/10/2022

ℓp-ball Optimization and Graph Matching
Lecturer: Jiantao Jiao Scribe: Newton Cheng and Xin Lyu

1 Optimization in ℓp balls

Up to this point, we have mainly considered two cases for a constrained optimization domain K in our
studies:

1. K2 = {x ∈ Rn | ∥x∥2 ≤ 1}

2. K1 = {x ∈ Rn | ∥x∥1 ≤ 1}

In these cases, we can employ our toolbox of (sub)gradient descent and mirror descent methods to perform the
optimization, and as long as the functions or their gradients are appropriately continuous and/or bounded,
we obtain convergence guarantees. A natural question is to ask whether similar properties hold for other
norms; it turns out that in the case of the ℓ∞ norm, we may not necessarily be able obtain such guarantees
(at least with our current techniques). Let us see where things can go wrong.

We define our domain as the ℓ∞ ball K∞ = {x ∈ Rn | ∥x∥∞ ≤ 1}. Recall that in the setup for mirror
descent, we required that the mirror map R : Ω → R (where Ω contains K∞ as a subset) be strongly convex
– for our purposes, we will assume strong convexity condition is with respect to ℓ∞ norm and modulus 1:

DR(x, y) = R(x)−R(y)− ⟨∇R(y), x− y⟩ ≥ 1

2
∥x− y∥2∞ , (1)

Then one has the following result:

Theorem 1. For any continuous differentiable map R : Ω → R with K∞ ⊆ Ω satisfying the strong convexity
condition in Equation (1), we have

sup
x,y∈K

DR(x, y) ≥
1

2
n. (2)

Proof Without loss of generality, assume R and ∇R vanish at the origin. We will show that there always
exists a point v such that R(v) is at least n/2 greater than its linear approximation at the origin. Now, take
a unit step in the direction of the first standard basis vector e1, arriving at the point v1 = (1, . . . , 0). Then
by the strong convexity condition R(v1) ≥ 1

2 . Now, we want to take a second unit step along e2. If the
partial derivative with respect to the second coordinate x2 at v1 is negative ∂2R(v1) < 0, then we will step
in the negative direction. If ∂2R(v1) ≥ 0, then we step in the positive direction. In either case, we find that
R(v2) ≥ 1 by strong convexity, i.e. R has increased by at least 0.5 again. We proceed in this fashion for a
third step and all the way to the nth step. After n steps, we will have arrived at a point v on the unit box
such that R(v) ≥ n/2, but with R(0) = 0. Correspondingly, we find supx,y∈K DR(x, y) ≥ DR(v, 0) ≥ 1

2n.

This is a problem, because it is not dimension-free – recall that the only place the dimension featured
in previously discussed algorithms was computing the gradient. Otherwise, the runtimes of the various
algorithms depended only on finite norm bounds and the target suboptimality gap. Hence, as long as we
had a first-order oracle that could return the gradient in an efficient manner, our algorithms would function
independent of the dimension. This is no longer the case if we have the above situation: we may need a
number of oracle calls that scales polynomially in n. Hence, we get the heuristic that the “ℓ∞-ball is hard
to optimize.”

While the problem is serious for the ℓ∞-ball, it turns out to be a generic feature that the ℓp-ball is “hard”
for p ≥ 2:

1

Theorem 2. Let Kp = {x ∈ Rn | ∥x∥p ≤ 1} be the ℓp-ball for p ≥ 2. Consider a family of functions
Fn,p(L) = {f : Rn → R | f convex and L-Lipschitz w.r.t. ∥·∥p}. Assume we have access to a first-order
oracle for any f ∈ Fn,p(L). Then for any t ≤ n and any algorithm B that makes at most t queries, there
exists f ∈ Fn,p(L) such that f(x̄B(f)) − f⋆ ≥ 0.5L

t1/p
, where x̄B(f) is the output of B and f⋆ is the minimal

value of f on Kp.

Proof We only prove for the case that L = 1. The same reasoning applies to every L > 0 by scaling
the function family properly. Let t ≥ 1 be the parameter in the statement of Theorem 2. We consider a
subfamily of Fn,p(L), defined as:

Ft =

{
f(x) = max

i∈[t]
[εixi + δi]

}
which is given by 2t collections of εj ∈ {±1} and all collections of 0 ≤ δi ≤ 1

2t1/p
. It is straightforward to

verify that functions in Ft are 1-Lipshitz w.r.t. ∥ · ∥p. Ft is also convex, because every function in Ft is
constructed by taking a point-wise maximum among a set of linear functions. Hence, we may conclude that
Ft is a subfamily of Fn,p(L).

Now let B be an algorithm that operates on Ft and makes t − 1 queries. We construct an adversarial
function in Ft against B as follows: let x1 be the first point generated and queried by B. Let i1 be the index
of the largest (in absolute value) coordinate of x1. Choose ε∗i1 ∈ {±1} in such a way that εi1x

1
i1

= |x1
i1
|.

Choose δ∗i1 = 1
2t1/p

. Then we may consider the following subfamily of Ft:

F (1) =

f(x) = maxi∈[t][εixi + δi] :

 εj ∈ {±1},∀j ̸= i1
εi1 = ε∗i1

δi1 = δ∗i1 > maxj ̸=i1 δj ≥ 0

 .

Intuitively, this means that we fix the parameters εi1 , δi1 to ε∗i1 , δ
∗
i1

respectively, and choose every other δj to

be less than δ∗i1 . Note that every function in F (1) behaves the same way in a neighborhood of x1 (because
the “max” operator always takes the (xi1εi1 + δi1) term). Therefore, after making one query, B cannot
distinguish functions in F .

Let us proceed. At each time step ℓ ∈ [t − 1], suppose that the algorithm B has queried ℓ − 1 points
x1, . . . , xℓ−1 and is going to query xℓ. Also suppose we have a subfamily of functions from the last step,
denoted by F (ℓ−1). We then calculate:

• For every s ≤ ℓ, let is = argmaxi/∈{i1,...,is−1} |xs
i |. Choose ε∗is such that ε∗is · x

s
is
= |xs

is
|.

• Assume we have constructed δ∗i1 , . . . , δ
∗
iℓ−1

before the start of the ℓ-th step. We choose δ∗iℓ such that it
is slightly smaller than δ∗iℓ−1

. Here, we maintain an invariant that δ∗i1 > δ∗i2 > · · · > δ∗is .

Then we construct

F (ℓ) =

f(x) = maxi∈[t][εixi + δi] :

 εj ∈ {±1},∀j /∈ {i1, . . . , iℓ}
εi1 = ε∗i1 , εi2 = ε∗i2 , . . . , εiℓ = ε∗iℓ

δi1 = δ∗i1 > δi2 = δ∗i2 > · · · > δiℓ = δ∗iℓ > maxj /∈{i1,...,iℓ} δj ≥ 0

 .

Intuitively, this means that we fix one coordinate of ε and δ in each step. We fix εi in such a way that its
sign always agrees with the query variable. We choose δi in a decreasing order, with arbitrarily small gap
between every two consecutive steps.

It is not hard to verity that (1) F (ℓ) is a subfamily of F (ℓ−1); and (2) the algorithm B cannot distinguish
functions in F (ℓ) after making ℓ queries. The second claim follows by observing that for every function in F (ℓ),
the local maximizers around points x1, . . . , xℓ always appear among the ℓ chosen coordinates {i1, . . . , iℓ},
whose associated parameters εi, δi are fixed inside F .

After t − 1 steps of query, let xt denote the final output of the algorithm. We apply the construction
above again and get the final function family F (t). Choose an arbitrary function ft from F (t). On the one
hand, for every xq, q ∈ [t], we have ft(x

q) ≥ ε∗iqx
q
iq
+ δiq ≥ 0. On the other hand, consider an adversarial

2

input x∗ such that x∗ = − 1
t1/p

ε∗ (we interpret ε∗ as a vector, and take coordinate-wise operation on it).
Note that ∥x∥p = 1 and

ft(x
∗) ≤ − 1

t1/p
+max

i∈[t]
δi ≤ − 1

2t1/p
.

This shows that fk(x)− f∗ ≥ 1
2t1/p

as desired.

2 Perfect matching in bipartite graphs

Much of this section is derived from Section 7.6 in [1]. We stressed in the beginning of our study of mirror
descent that one of its most powerful properties is the flexibility by which we can choose our updates, in the
sense that the gt appearing in the algorithm can be anything, not just a gradient. We have the following
general statement:

Theorem 3. Consider exponential gradient descent (EGD) with the modification that we no longer interpret
gt as a gradient, but still requiring ∥gt∥∞ ≤ G. Then

1

T

T−1∑
i=0

⟨gt, pt − p⟩ ≤ ϵ, (3)

if η = Θ

(√
logn
TG2

)
and T = Θ(G

2 logn
ϵ2), where p = argmin

p∈∆n

1
T

∑T−1
i=0 ⟨gt, p⟩ and ∆n is the n-dimensional

simplex.

Proof The proof is identical to that of exponential gradient descent.

We now apply this result to the problem of perfect matching in bipartite graphs. The setup is as follows:
consider an undirected, unweighted graph with vertex set V = A ∪ B such that A and B are disjoint, and
every edge e in the edge set E has one end in A and one end in B – this is called a bipartite graph. A perfect
matching of G is a subset of edges M ⊆ E such that each vertex v ∈ V is incident to exactly one edge in M .
Notice that a perfect matching can exist only if |A| = |B| = n for total vertices |V | = 2n. We set m = |E|.
We will proceed by recasting the perfect matching problem as the following linear program:

Find x ∈ Rm

s.t.
∑
e∈E

xe = n,

∀v ∈ V,
∑
e:v∈e

xe ≤ 1,

∀e ∈ E, xe ≥ 0.

(4)

This is a continuous relaxation of the perfect matching problem: its solutions are called fractional perfect
matchings, and proving that this is equivalent to the original integral perfect matching is a non-trivial
problem in combinatorial optimization. One direction is quite simple: if M ⊆ E is a perfect matching, then
its indicator vector 1M ∈ Rm is a fractional perfect matching. The indicator 1M is defined as having 1 in
the eth component if e ∈ M , and 0 otherwise.

Now, our goal will be to find an ϵ-optimal solution; we will slightly relax the condition that
∑

e:v∈e xe ≤ 1
to
∑

e:v∈e xe ≤ 1 + ϵ for all v ∈ V . That is, we will be looking for solutions that only approximately satisfy
the fractional perfect matching constraints – indeed, all of our continuous optimization algorithms can only

3

guarantee ϵ-accuracy in finite time. It turns out that this relaxation allows us to find matching of cardinality
at least (1− ϵ)n in G, so taking ϵ < 1

n will be sufficient to get a matching in G.
Our algorithm to solve approximate fractional perfect matching will be as follows: we need to input a

graph G, T > 1, and η > 0. Then we run the algorithm:

Algorithm 1 Approximate fractional perfect matching

Initialize:
w0 = (1, . . . , 1) ∈ R2n

for t = 0, . . . , T − 1 do∑
v∈V wt

v

(∑
e:v∈e x

t
e

)
≤
∑

v∈V wt
v and∑

e∈E xt
e = n and

xt
e ≥ 0 for all e ∈ E

Construct gt ∈ R2n as gtv = 1
n

(
1−

∑
e:v∈e x

t
e

)
Update wt+1

v = wt
v · exp(−η · gtv) for all v ∈ V

end for
return x = 1

T

∑T−1
t=0 xt

We first get some intuition for how this algorithm works. We interpret the w vectors as weight vectors
that, in some sense, quantify how much we violate the constraint that

∑
e:v∈e xe ≤ 1+ ϵ. At every iteration,

it tries to shrink the components of xt to satisfy the constraint. We see that the algorithm automatically
satisfies the other 2 constraints in the linear program, by virtue of a restricted search space. We now prove
the following theorem:

Theorem 4. Given a bipartite graph G with 2n vertices and m edges that has a perfect matching, for ϵ > 0,
Algorithm 1 outputs an ϵ-approximate fractional perfect matching for G in time O(n2m/ϵ2).

Proof Assume ∥gt∥∞ ≤ 1 and that a valid xt exists at every step. We provide a lemma proving both of
these statements at the end of the notes. For now, introduce the familiar notation:

pt =
wt

∥wt∥1
. (5)

Recall the performance guarantee from EGD that 1
T

∑T−1
t=0 ⟨gt, pt − p⟩ ≤ δ for T = Θ

(
logn
δ2

)
. Then choose

p = ev ∈ R2n for some v ∈ V , where ev is vector with a 1 in the v-th component, and 0s otherwise. Then
plugging into the performance guarantee gives

− 1

T

T−1∑
t=0

gtv ≤ −
T−1∑
t=0

⟨pt, gtv⟩+ δ, (6)

where ⟨gt, p⟩ = ⟨gt, ev⟩ = gtv. Now, we know that
∑

v∈V wt
v

(∑
e:v∈e x

t
e

)
≤
∑

v∈V wt
v, which implies

∑
v∈V

wt
v

(
1−

∑
e:v∈e

xt
e

)
≥ 0. (7)

Noticing the similarity to gtv, we can just normalize the LHS above by dividing by n and ∥wt∥1, and we
arrive at

⟨pt, gt⟩ ≥ 0. (8)

4

Now returning to our performance guarantee, we can use this to get the new bounds

1

Tn

T−1∑
t=0

(∑
e:v∈e

xt
e − 1

)
≤ −

T−1∑
t=0

⟨pt, gtv⟩+ δ ≤ δ. (9)

Rearranging terms, we find ∑
e:v∈e

x̄e ≤ 1 + nδ. (10)

Then choosing δ = ϵ/n gives T = Θ
(

n2 logn
ϵ2

)
, and the fact that x̄e is a convex combination of each iterate

implies that it satisfies the constraints enforced at every iterate:
∑

e∈E x̄e = n and x̄e ≥ 0. We hence see
that x̄ is an ϵ-approximate solution to fractional perfect matching on G.

Finally, we know that the number of iteration is O
(

n2 logn
ϵ2

)
, and each iteration takes O(m) time (as we

show in the existence lemma below), dominated by the search for an edge with minimal
∑

e:v∈e w
t
v.

We remark that while this is not the most efficient known algorithm for perfect matching, it is remarkably
simple, and requires essentially no modification to the EGD algorithm.

We finish off these notes with the promised existence lemma:

Lemma 5. If G has a perfect matching, then xt satisfying the requirements for Algorithm 1 exists and can
be found in O(m) time, and ∥gt∥∞ ≤ 1.

Proof Begin by rewriting the weight condition
∑

v∈V wt
v

(∑
e:v∈e x

t
e

)
≤
∑

v∈V wt
v as∑

e∈E

αexe ≤ β, (11)

where
αe =

∑
e:v∈e

wt
v, β =

∑
v∈V

wt
v. (12)

If G has a perfect matching M , then there exist edges e1, . . . , en that do not share any vertices – this is the
definition of a perfect matching. Hence, for these edges, it must the case that

n∑
i=1

αei = β. (13)

Now define e⋆ = argmin
e∈E

αe. Then we get the simple bound

nαe⋆ ≤
n∑

i=1

αei = β. (14)

Then if we choose xt
e⋆ = n and xt

e = 0 for all e ̸= e⋆, the resulting xt satisfies the weight condition in
Equation 11. This takes O(m) time to search through all edges on the graph to find e⋆. Finally, notice that
for this choice of xt, we have the following bound for all v ∈ V :

−1 ≤
∑
e:v∈e

xt
e − 1 ≤ n− 1, (15)

which follows from observing that
∑

e:v∈e x
t
e ≥ 0 by the xt

e ≥ 0 condition, and
∑

e:v∈e x
t
e ≤ n follows from

the condition that
∑

e∈E xt
e = n in combination with xt

e ≥ 0. This then gives us the desired bound that
∥gt∥∞ ≤ 1 by plugging in the definition of gt.

5

References

[1] N. K. Vishnoi, Algorithms for Convex Optimization. Cambridge University Press, 2021.

6

