
EE C227C Convex Optimization and Approximation Lecture 7 - 2/8/2022

Lecture 7: Mirror Descent
Lecturer: Jiantao Jiao Scribe: Nathan Ju, Geng Zhao

1 Recap: EGD and Mirror Descent

In this lecture, we give a more thorough treatment of the mirror descent (MD) framework. Let us first define
the Bregman divergence between two points:

Definition 1 (Bregman divergence). The Bregman divergence between x and y with respect to a strictly
convex function R is given by

DR(x, y) = R(x)−R(y)− ⟨∇R(y), x− y⟩ . (1)

Recall (see lecture 5 and 6) the MD algorithm: Our (t+ 1)’th iterate is given by

xt+1 = argmin
x∈K

DR(x, x
t) + η⟨∇f(xt), x⟩ . (2)

Note that different choices of R result in different behavior for the MD algorithm. For example, setting
R(x) = 1

2 ||x||
2 results in the proximal gradient descent algorithm. As another example, using R(x) =∑n

i=1 xi lnxi − xi (called the unnormalized negative entropy function) results in the exponential gradient
descent (EGD) algorithm. The (t + 1)’th iterate can be written in a more convenient form; let us define
gt = ∇f(xt) and wt+1 = ∇R−1(∇R(xt)− ηgt) and rewrite the iterate:

xt+1 = argmin
x∈K

DR(x, x
t) + η⟨gt, x⟩

= argmin
x∈K

η⟨gt, x⟩+R(x)−R(xt)− ⟨∇R(xt), x− xt⟩

= argmin
x∈K

R(x)− ⟨∇R(wt+1), x⟩

= argmin
x∈K

R(x)−R(wt+1)− ⟨∇R(wt+1), x− wt+1⟩

= argmin
x∈K

DR(x,w
t+1) .

(3)

In pseudocode,

Algorithm 1 Mirror descent

for t = 0, ..., T − 1 do
Obtain gt ← ∇f(xt)
Assign wt+1 to be s.t. ∇R(wt+1) = ∇R(xt)− ηgt

Assign xt+1 ← argminx∈K DR(x,w
t+1)

end for
Return x̄ = 1

T

∑T−1
t=0 xt

1

2 Interpretation of “Mirror”

An observation by Nemirovsky and Yudin in 1978 gives a good justification for the “mirror” aspect of mirror
descent. As an example, recall that vanilla gradient descent’s update rule is given by xt+1 = xt − η∇f(xt).
The gradient ∇f(xt) is actually a linear functional, which lives in the dual space of xt, so adding the two
elements is, in a sense, ill-defined. This motivates the mirror viewpoint and the mirror descent framework
of the previous section.

In more detail, let X be our primal space (think of this as the space in which xt lives) and Y the dual
space. Using the same notation as before, define

∇R : X 7→ Y (4)

as the gradient of the Bregman divergence function R, which we assume to be bijective. In the mirror descent
framework, ∇R and ∇R−1 are the maps between primal and dual space; once a point is mapped to the dual
space, the algorithm performs “gradient descent” in this space, then maps the resulting dual point back to
the corresponding closest primal point. In this way, the dual space is the “mirror” to the primal space. See
the following figure for an illustration.

3 Performance guarantee

Theorem 2. Consider convex functions f : K → R and R : X → R with K ⊆ X ⊆ Rn and assume the
followings:

1. ∇R : X → Rn is a bijection.

2

2. f has bounded gradient with respect to ∥ · ∥∗, i.e., ∥∇f(x)∥∗ ≤ G for all x ∈ K.

3. R is σ-strongly convex with respect to the norm ∥ · ∥, i.e.,

DR(x, y) ≥
σ

2
∥x− y∥2 ∀ x, y ∈ K. (5)

Then the MD algorithm guarantees that

f(x̄)− f(x∗) ≤ 1

ηT

(
D +

Tη2G2

2σ

)
, (6)

where D := DR(x
∗, x0). Further, by the AM-GM inequality, we may choose η =

√
2σ

TG2D to minimize the

right hand side, which yields

f(x̄)− f(x∗) ≤
√

2DG2

σT
. (7)

Remark Here are a few observations and interpretations regarding this result.

(a) The strong convexity of R can be formulated alternatively (by writing out DR explicitly) as R(x) −
R(y)− ⟨∇R(x), x− y⟩ ≥ σ

2 ∥x− y∥2 for all x, y ∈ K, which implies (by interchanging x and y) that

⟨∇R(x)−∇R(y), x− y⟩ ≥ σ∥x− y∥2 ∀ x, y ∈ K, (8)

an important property for strongly convex functions in optimization theory.

(b) The norm ∥ · ∥ is arbitrary and is an algorithmic choice. E.g., in EGD, ∥ · ∥ is the ℓ1 norm and ∥ · ∥∗ is
the ℓ∞ norm.

(c) The bound (7) depends primarily on the constants D and G; we can always scale R accordingly to
make σ = 1 (which will affect D). The constant G can be interpreted as the Lipschitz constant of

function f , i.e., G = supx,y∈K,x̸=y
|f(x)−f(y)|

∥x−y∥ . This allows us to incorporate the subgradient method

into this framework (so that gt can be a subgradient of f at xt).

Sketch of Proof The proof is nearly identical to the analysis of EGD in the previous lecture. It follows
the same initial steps using convexity of f , the law of cosines (which is valid for any Bregman divergence),
and the generalized Pythagorean theorem (again valid for any Bregman divergence). The only difference is
in the next step where we use the strong convexity assumption, in place of Pinsker’s inequality, along with
Hőlder’s inequality to derive

DR(x
t, wt+1)−DR(x

t+1, wt+1) ≤ ∥gt∥∗∥xt − xt+1∥ − σ

2
∥xt − xt+1∥2.

The rest of the proof is entirely the same and requires no further properties.

4 Comparing EGD with subgradient method

At this point, it is important to examine the motivation for the EGD algorithm. Now that we are able to
cast both EGD and the subgradient method into the MD framework, we will provide a comparison between
the two.

We follow the discussion in the online lecture notes [1, Pg 619-624].

3

The subgradient method can be treated as mirror descent in domain X ⊆ B2(r) = {x ∈ Rn : ∥x∥2 ≤ r}
with Rsubgrad(x) =

1
2∥x∥

2
2, so

DRsubgrad
(x, y) =

1

2
∥x− y∥22 ≤ O

(
max
x,y∈X

∥x− y∥22
)

(9)

for any x, y ∈ X.
Similarly, the EGD method operates in domain X ⊆ ∆n = {x ∈ Rn : x ≥ 0, ∥x∥1 = 1}, i.e., the standard

simplex1. In Lecture 5 and 6, we used the generalized negative entropy function H(x) as the distance
generating function and claimed that DH(x, 1

n1) ≤ O(lnn) for any x ∈ ∆n. This time, however, we use a
slightly different distance generating function

REGD(x) = (1 + δ)

n∑
i=1

(
xi +

δ

n

)
log

(
xi +

δ

n

)
, (10)

with a small δ = 10−16. Heuristically, this is nearly identical to the negative entropy function, and we justify
this choice as follows: First, writing x̄i = xi + δ/n and R̄EGD(x) =

∑n
i=1 x̄i log x̄i, we use Cauchy-Schwarz

inequality to derive

⟨h,∇2REGD(x)h⟩ = (1 + δ)⟨h,∇2R̄EGD(x)h⟩ = (1 + δ)

n∑
i=1

h2
i

x̄i

=

(
n∑

i=1

x̄i

)(
n∑

i=1

h2
i

x̄i

)
≥

(
n∑

i=1

|hi|

)2

= ∥h∥21 (11)

for all x ∈ ∆n and all h ∈ Rn, implying strong convexity (with respect to ℓ1 norm). Next, for any x, y ∈ ∆n,
again writing x̄i = xi + δ/n and ȳi = yi + δ/n, we have

DREGD
(x, y) = REGD(x)−REGD(y)− ⟨∇REGD(y), x− y⟩

= (1 + δ)

(
n∑

i=1

x̄i log x̄i −
n∑

i=1

ȳi log ȳi −
n∑

i=1

(1 + log ȳi)(x̄i − ȳi)

)

= (1 + δ)

(
n∑

i=1

x̄i log
x̄i

ȳi
+

n∑
i=1

yi −
n∑

i=1

xi

)

≤ (1 + δ)

(
n∑

i=1

x̄i log
n+ δ

δ
+ 1

)
= O(lnn), (12)

where we simply use the trivial bound δ/n ≤ x̄i, ȳi ≤ 1 + δ/n. Notice that this guarantee holds for all
pairs x, y ∈ ∆n, an improvement over the guarantee we had on DH(x, y) (which only holds when y = 1

n1).
Further, a more careful treatment of the last step in (12) reveals that, whenever ∥x−y∥1 =

∑n
i=1 |x̄i− ȳi| ≤ a

for some a ∈ (0, 1), we have

DREGD
(x, y) = (1 + δ)

(
n∑

i=1

x̄i log
x̄i

ȳi
+ ȳi − x̄i

)
≤
(
a+

δ

n

)
log

a+ δ/n

δ/n
− a, (13)

achieved when x1 = a, y1 = 0, and xi = yi for i > 1. This can be seen by first fixing |xi − yi| for all i ∈ [n]
and maximizing over y, and then maximizing over x fixing y and ∥x − y∥1 using convexity of the negative
entropy function. By Taylor expanding (13) to second order, we conclude that

DREGD
(x, y) ≤ O(log n) max

x,y∈X
∥x− y∥21. (14)

1In [1], the simplex setup has domain X = {x ∈ Rn : x ≥ 0, ∥x∥1 ≤ 1}. It is easy to see that this is equivalent to the EGD
setup for ∆n+1 in our class.

4

Now we compare the convergence of EGD and subgradient method for general convex optimization
problems. Note that in order to apply these methods, we first need to transform the domain X of the
problem into the standard simplex or the unit ball by scaling and translating. This can be done for any
compact feasible domain X, and the scaling only affects the Lipschitz constant of f by a factor of the
diameter of X (in ℓ1 for EGD and in ℓ2 for subgradient method).

Applying the efficiency estimate (7) in Theorem 2 and the bound (14), we see that the guaranteed upper
bound for EGD is

EEGD :=

√
O(lnn) ·maxx,y∈X ∥x− y∥1 maxx∈X ∥f ′(x)∥∞√

T
, (15)

and by (9) the corresponding bound for subgradient method is

Esubgrad :=

√
O(1) ·maxx,y∈X ∥x− y∥2 maxx∈X ∥f ′(x)∥2√

T
. (16)

The ratio of these two quantities is

EEGD

Esubgrad
= O(

√
lnn) · maxx,y∈X ∥x− y∥1

maxx,y∈X ∥x− y∥2︸ ︷︷ ︸
A

· maxx∈X ∥f ′(x)∥∞
maxx∈X ∥f ′(x)∥2︸ ︷︷ ︸

B

. (17)

A smaller ratio EEGD

Esubgrad
indicates that, as far as theoretical guarantees are concerned, EGD outperforms

subgradient method, and vice versa.
Notice that ∥u∥p ≥ ∥u∥q whenever 1 ≤ p ≤ q ≤ ∞. Hence, the term A ≥ 1 always (i.e., against EGD)

and can range between 1 and
√
n depending on the geometry of the domain X; similarly, B ≤ 1 always

(i.e., in favor of EGD) and can range from 1 to as small as 1√
n

depending on the geometry of f . The

factor of O(
√
lnn) is against EGD but in practice just a moderate absolute constant. Overall, the relative

performance of EGD and subgradient method really depends on the geometry of X and f .
To make the comparison concrete, let us examine a few extreme examples. We first compare the cases

when X is an (ℓ2) ball versus when X is the standard simplex.

• When X is a ball B2(r) ⊆ Rn, the diameter in ℓ1 is
√
n larger than in ℓ2, i.e., A =

√
n. Since B ≥ 1√

n
,

the ratio EEGD

Esubgrad
≥ 1, meaning that the classical subgradient method outperforms EGD.

• When X is the standard simplex ∆n ⊆ Rn, its diameters in ℓ1 and ℓ2 are both of constant order,
i.e., A = O(1). Since B ≤ 1 and O(

√
lnn) is in practice a moderate absolute constant, the ratio

EEGD

Esubgrad
≤ O(1), meaning that EGD outperforms the classical subgradient method.

Next, we examine the dependency on the geometry of f :

• When all first order partial derivatives of f (in X) are of the same order, i.e., f is nearly equally
sensitive to each variable, f ′ has n roughly equal coordinates and hence

B = O

(
∥1∥∞
∥1∥2

)
= O

(
1√
n

)
. (18)

• When just O(1) first order partial derivatives of f (in X) are of the same order while the remaining
are negligible, i.e., f is only sensitive to a constant number of variables, we have

B = O

(
∥e1∥∞
∥e1∥2

)
= O(1). (19)

5

5 Comparison with Newton’s method

We can now compare Newton’s method with mirror descent. In Newton’s method, the update step is given
by

xt+1 = argmin
x∈K

1

2
(x− xt)⊤H(xt)(x− xt) + η⟨gt, x⟩ (20)

where H(xt) is an approximation to the Hessian of the function f around xt. We will see in the future that
Newton’s method performs well near the point of optimality, but in general is not guaranteed to converge.

Now let us analyze the update step in mirror descent. Recall that it is given by

xt+1 = argmin
x∈K

DR(x, x
t) + η⟨∇f(xt), x⟩ . (21)

If we expand DR(·, xt) locally around xt, then it is approximately equivalent to 1
2 (x− xt)⊤∇2R(xt)(x− xt).

So the difference between mirror descent and Newton’s method is that in the former, we are taking the
Hessian of the strongly convex function R instead of the function f . As opposed to Newton’s method, mirror
descent does enjoy global convergence guarantee.

We will offer more discussion in the future when we study second order methods.

6 Discussion: Why entropy function?

Recall from Lecture 5 that for exponential gradient descent on the standard simplex we used distance
generating function R(x) = H(x) =

∑n
i=1(xi log xi − xi), i.e., the generalized negative entropy function.

In general, we want the distance generating function R(x) to minimize the parameter D := DR(x
∗, x0)

in Theorem 2 to achieve better performance guarantee for mirror descent, subject to the strong convexity
constraint under the given norm ∥ · ∥. In the simplex case, i.e., when X = ∆n and ∥ · ∥ = ∥ · ∥1, it can
be shown that the entropy function achieves a value of D ≤ maxx∈X DH(x, x0) = O(log n) when we choose
x0 = 1

n1 = minx′∈X H(x′), the H-center of X. In this setup, this upper bound on D cannot be reduced
by more than an absolute constant factor with other choices of R(x). Similarly, when X = B2(r) is the
Euclidean ball and ∥ · ∥ = ∥ · ∥2, the choice of R(x) = 1

2∥x∥
2 leads to D ≤ O(1)r2, again optimal up to an

absolute constant.
However, it is important to note that the entropy function is not the only reasonable choice: similar

convergence guarantees can be obtained for other distance generating functions, e.g., ω(x) =
∑n

i=1 x
p(n)
i

or ω(x) = ∥x∥2p(n) with p(n) = 1 + O(1/ lnn). These alternatives can be even better than the standard

setup in some sense. Namely, ω(x) is continuously differentiable on the entire X = ∆n, and moreover
Dω(x, y) ≤ O(log n) for all x, y ∈ X not just when y = 1

n1 (cf. DR(x, y) ≤ O(r2) for all x, y ∈ B2(r) with
R(x) = 1

2∥x∥
2, and the distance generating function REGD we used above also has a similar guarantee in

the simplex setup). These properties are valuable in certain situations, e.g., when updating prox-centers in
the bundle methods, which we will cover in the future. The only drawback is that their proximal maps are
harder to compute (recall the closed form solution for the standard EGD from Lecture 5), often solved using
the bisection method on simple univariate equations. In practice, however, this computational overhead is
usually insignificant. See Section 5.2 of [2] for more discussions on different proximal setups.

References

[1] A. Nemirovski, “Lectures on modern convex optimization,” https://www2.isye.gatech.edu/∼nemirovs/
LMCOTR2022Spring.pdf, 2022, accessed: 2022–02-14.

[2] A. Ben-Tal and A. Nemirovski, Lectures on modern convex optimization: analysis, algorithms, and engi-
neering applications. SIAM, 2001.

6

