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Lecture 6: Exponential Gradient Descent
Lecturer: Jiantao Jiao Scribe: Syomantak Chaudhuri, Ezinne Nwankwo, Sheng-Jung Yu

In this lecture, we explain the algorithm for exponential gradient descent (EGD) and prove an upper
bound of it’s convergence rate. Previously, we discussed the general paradigms of descent algorithms, such
as when the distance function was quadratic (D(x, xt) = 1

2∥x− xt∥22). Now lets choose a particular distance
function for a convex set known as Kullback-Leiber divergence over a probability simplex.

Definition 1 (Kullback-Leiber Divergence over ∆n). For two probability distributions p, q ∈ ∆n, their
Kullback-Leiber divergence is defined as

DKL :=

n∑
i=1

pi log
pi
qi

Despite not being symmetric, KL divergence follows natural distance-like properties and for this definition
to make sense it follows that if qi = 0 then pi = 0 and DKL(p, q) = 0 ⇒ p = q. Additionally, from convexity,
it follows that DKL ≥ 0.

Such a choice leads to the EGD algorithm. In this lecture, we will analyze EGD and provide an upper
bound [1].

1 The Algorithm

Let’s recap the EGD algorithm. We are trying to solve the following convex optimization problem

min
p∈∆n

f(p),

where f : ∆n 7→ R is a convex function over the closed and compact n-dimensional probability simplex

∆n :=

{
p ∈ [0, 1]n :

n∑
i=1

pi = 1

}
.

For this algorithm, the update rule that now incorporates the distance function DKL. It takes the form:

pt+1 := argmin
p∈∆n

{
DKL(p, p

t) + η
〈
∇f(pt), p

〉}

Algorithm 1 Exponential Gradient Descent (EGD)

Input: convex f : ∆n 7→ R
Parameters: η ≥ 0, T > 0
Output: A point p̄ ∈ ∆n

Algorithm:

1: Set p0 = 1
n1 (the uniform distribution) ∈ ∆n

2: for t = 0 : T − 1 do
3: gt := ∇f(pt)

4: wt+1 := pt+1
i e−ηgt

i

5: pt+1
i :=

wt+1
i

∥wt+1∥

6: return p̄ = 1
T

∑T−1
t=0 pt
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It’s important to note that with EGD the output is actually an average of point p̄ as opposed to the last
iterate pT−1, which was the case in other gradient descent algorithms discussed in class. To illustrate why
this difference matters, let’s consider an example where we wish to minimize f(x) = |x|. The gradient of
this function will either be 1 or -1 at every point, but knowing this does not give us any information about
whether we are close to or far from the minimizer (0). As opposed to the case where we have a Lipschitz
gradient, with EGD the gradient does not guarantee that we are close to the optimal. So instead we gather
more information by visiting more points on the function and averaging.

2 Proof of Convergence

We want to show that for any p ∈ ∆n, it holds that

f(p̄)− f(p) ≤ ϵ,

where p̄ = 1
T

∑T−1
t=0 pt. If we can prove the above bound, then it is also true that this results holds for the

minimizer p∗ of f over ∆n.
Step 1: Bound using gradients

We first start with bounding f(p̄)− f(p) by it’s gradient.

f(p̄)− f(p) ≤
(
1

T

T−1∑
t=0

f(pt)

)
− f(p) (Def. of convexity)

=
1

T

T−1∑
t=0

(f(pt)− f(p))

≤ 1

T

T−1∑
t=0

⟨∇f(pt), pt − p⟩ (First-order notion of convexity)

=
1

T

T−1∑
t=0

⟨gt, pt − p⟩

Now all we need to do is focus on providing an upper bound for 1
T

∑T−1
t=0 ⟨gt, pt − p⟩.

Step 2: Write in terms of KL-divergence

Fix t ∈ {0, . . . , T − 1}. We know from algorithm 1, that

wt+1
i = ptie

−ηgt
i

and by solving for gti , we get that for all i ∈ {1, . . . , n}

gti =
1

η
(log pti − log wt+1

i ).

Next, we will write this in terms of gradient of the generalized negative entropy function H(x) =∑n
i=1(xilog xi − xi) and ∇H(x) = [ln x1, ln x2, . . . , ln xn]

T

gt =
1

η
(log pti − log wt+1

i ) =
1

η
(∇H(pt)−∇H(wt+1))

We can continue simplifying gt, but for the next step to make sense, we must first define the Law of
cosines for Bregman divergence.
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Lemma 2 (Law of Cosines for Bregman Divergence). Let R : K 7→ R be a convex, differentiable function
and let x, y, z ∈ K. Then

⟨∇R(y)−∇R(z), y − x⟩ = DR(x, y) +DR(y, z)−DR(x, z) (1)

where DR(x, y) = R(x) − R(y) − ⟨∇R(y), x − y⟩ is the Bregman divergence induced by R and it is DR ≥ 0
since R is convex.

In the special case of R = ∥x∥22, by the above formula we can write

2⟨y − z, y − x⟩ = ∥x− y∥2 + ∥y − z∥2 − ∥x− z∥2

⇒ ∥x− z∥2 = ∥x− y∥2 + ∥y − z∥2 − 2⟨y − z, y − x⟩

This is very similar to the law of cosines in Euclidean space.

Figure 1: The geometric interpretation of the law of cosines equation in Eucliden space.

Going back to bounding our gradient, with this we can write

⟨gt, pt − p⟩ = 1

η
⟨∇H(pt)−∇H(wt+1), pt − p⟩

=
1

η
(DH(p, pt) +DH(pt, wt+1)−DH(p, wt+1)),

where DH is some distance function induced by the entropy function H. We set DH = DKL (See theo-
rem 1).
Step 3: Using the Pythagorean theorem to get a telescoping sum

To further simplifies the gradient, we use the following lemma:

Lemma 3. Generalized Pythagoream Theorem
Let R : K 7→ R be a convex, differentiable function and let S ⊆ K be a closed convex subset of K. Let

x, y ∈ S and z ∈ K such that

y = argmin
u∈S

DR(u, z).

Then

DR(x, y) +DR(y, z) ≤ DR(x, z).
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The geometric interpretation is that z is a point outside the convex set S, and we define a projection of
z to the set S to be y = argminu∈S DR(u, z), the nearest point in S with respect to the Bregman Distance
of defined by R.

Let’s say R = ∥x∥22, the theorem becomes

∥x− y∥22 + ∥y − z∥22 ≤ ∥x− z∥22,

which shows that the angle between the vectors x− y and z − y is an obtuse angle, as shown in Figure 2

Figure 2: The geometric interpretation of the General Pathegorean Theorem in Eucliden space.

We can see the Generalized Pathagorean Theorem can deal with points outside the convex set. In our
previous derivation, p and pt are both in ∆n, while wt+1 may be outside ∆n because we didn’t normalize it.
Thus, we can apply Generalized Pathagorean Theorem to get a relation for wt+1:

η

T−1∑
t=0

⟨gt, pt − p⟩

= η ∗ 1

η

T−1∑
t=0

⟨∇H(pt)−∇H(wt+1), pt − p⟩

≤
T−1∑
t=0

(DH(p, pt) +DH(pt, wt+1)− (DH(p, pt+1) +DH(pt+1, wt+1)))

=

T−1∑
t=0

(DH(p, pt)− (DH(p, pt+1)) +

T−1∑
t=0

(DH(pt, wt+1)−DH(pt+1, wt+1)))

= DH(p, p0)−DH(p, pT ) +

T−1∑
t=0

(DH(pt, wt+1)−DH(pt+1, wt+1)))

≤ DH(p, p0) +

T−1∑
t=0

(DH(pt, wt+1)−DH(pt+1, wt+1))), (1)

where for the last inequality, we use the fact that DH(p, pT ) ≥ 0.
Step 4: Using Pinsker’s inequality and bounded gradient to bound the remaining terms
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To proceed, we apply Law of Cosines on DH(pt, wt+1)−DH(pt+1, wt+1)):

DH(pt, wt+1)−DH(pt+1, wt+1) = DH(pt, wt+1)−DH(pt+1, wt+1) +DH(pt+1, pt)−DH(pt+1, pt)

= ⟨∇H(pt)−∇H(wt+1), pt − pt+1⟩ −DH(pt+1, pt)

= η⟨gt, pt − pt+1⟩ −DH(pt+1, pt)

Here, we cannot do too much on it unless additional assumptions are introduced. Thus, we introduce
the following two lemmas: The Pinsker’s Inequality and The Holder’s Inequality.

Lemma 4. Pinsker’s Inequality For every x, y ∈ ∆n we have

DKL(x, y) ≥
1

2
∥x− y∥21.

Pinsker’s Inequality show that the negative entropy function is 1-strongly convex with respect to the l1
norm. This can be easily observed by the definitions of negative entropy function and the strongly convexity.

DKL(x, y) = H(x)−H(y)− ⟨∇H(y), x− y⟩ ≥ 1

2
∥x− y∥21,

where the definition for l1 norm is ∥x∥1 =
∑n

1 |xi|.
Lemma 5. Holder’s Inequality

⟨x, y⟩ ≤ ∥x∥∥y∥∗
The definition of the dual norm is ∥y∥∗ = sup{⟨x, y⟩ | ∥x∥ ≤ 1}

DH(pt, wt+1)−DH(pt+1) ≤ η⟨gt, pt − pt+1⟩ − 1

2
∥pt+1 − pt∥21

Using Holder’s Inequality and the assumption that the gradient is bounded by G, we can get

⟨gt, pt − pt+1⟩ ≤ ∥gt∥∞∥pt − pt+1∥1
≤ G∥pt − pt+1∥1
= G∥pt+1 − pt∥1

Combining the above two lemmas, we can bound the expressions by the l1 norm of pt − pt+1

DH(pt, wt+1)−DH(pt+1, wt+1) ≤ η∥gt∥∞∥pt − pt+1∥1 −
1

2
∥pt+1 − pt∥21

≤ ηG∥pt+1 − pt∥1 −
1

2
∥pt+1 − pt∥21

where G = maxt ∥gt∥∞.
Now, denoting ∥pt+1 − pt∥1 as z, the expression above is ηGz − 1

2z
2; this is a quadratic which has a

maximum value of (ηG)2

2 achieved at z = ηG. Therefore, we can upper bound the expression as

DH(pt, wt+1)−DH(pt+1, wt+1) ≤ (ηG)2

2

Hence, Eq (1) gives

T−1∑
t=0

⟨gt, pt − p⟩ ≤ DH(p, p0)

η
+

TηG2

2

The expression on right is minimized by setting η =
√

2DH(p,p0)
G2T . In order to get a faster convergence, initial

distribution p0 is usually taken ’centrally‘ so DH(p, p0) is not too big for any distribution p. Also note that
we used a value of η which involves the quantity G, which we need to know beforehand!
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3 Mirror Descent

The general update rule is of form

xt+1 = argmin
x∈K

{
DR(x, x

t) + η⟨gt, x⟩
}

= argmin
x∈K

{
R(x)−R(xt)− ⟨∇R(xt), x− xt⟩+ η⟨gt, x⟩

}
= argmin

x∈K

{
R(x)− ⟨∇R(xt)− ηgt, x⟩

}
Let wt+1 be a point such that ∇R(wt+1) = ∇R(xt) − ηgt. Note that defining wt+1 has the underlying
assumption that ∇R(·) is a bijective map and its range is Rn.

xt+1 = argmin
x∈K

{
R(x)− ⟨∇R(wt+1), x⟩

}
= argmin

x∈K

{
DR(x,w

t+1)
}

So intuitively, we are projecting wt+1 back to domain K with respect to the the distance DR(·, ·).
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