
EE C227C Convex Optimization and Approximation Lecture 5 - 2/1/2022

Lecture 5: Mirror Descent
Lecturer: Jiantao Jiao Scribe: Huong Vu, Zheng Liang

1 Recap

Last week, we talked about Gradient Descent and Sub-Gradient method. There was a big confusion in
Gradient Descent theory because in term of Gradient Descent analysis, if the gradient is larger, we make
more progress; in term of Sub-Gradient Descent method, if the gradient is smaller, we make more progress.
Until today, we haven’t completely understood the confusion. A good idea for this confusion is Linear
Coupling which somehow combines the two concepts.

In this lecture, we will learn more about what Sub-Gradient Descent does by understanding Mirror De-
scent.

2 Mirror Descent

In Mirror Descent, we assume function f(x) satisfy bounded gradient condition i.e. there exists a G > 0
such that for all x ∈ K,

∥∇f(x)∥∗ ≤ G (1)

Note:

• we are not assuming gradient is Lipschitz here. In Sub-Gradient method, we also didn’t have a gradient;
we just said the given vector has bounded norm.

• If the gradient exists, then the gradient is bounded.

• G plays similar role as L in previous lectures.

• ∥ · ∥∗ is not necessarily l2 norm. In Mirror Descent, it is very important to choose the right norm for
the gradient.

We also assume good initialization: ∥x0 − x∗∥ ≤ D in Mirror Descent.

Let’s consider a special case where ∥ · ∥ = ∥ · ∥2 = ∥ · ∥∗. Suppose we have access to gradient and run
xt+1 = xt − η∇f(xt). Combining with the above assumptions, we have a guarantee as following:

f

(
1

T

T−1∑
i=0

xt

)
− f(x∗) ≤ 1

ηT

(
D2 + T

(ηG)2

2

)
(2)

Unlike in the last lecture in which we proved a result about the best iterate, we have a convergence guarantee
for the average of all iterates here.

Intuition: Even though in Sub-Gradient Method, the objective function might not decrease following the
negative direction of the gradient, this method still works because we can construct a so-called potential
function that actually decreases. This potential function is related to the distance between the current iterate
point and the optimal point.

1

3 Regularization View of Optimization/Local Model View

We want to solve the following problem

min
x∈K

f(x) (3)

where f is very complicated.

First, we can ask the oracle to get (x1,∇f(x1)), (x2,∇f(x2)), (x3,∇f(x3)), · · · . Then we use the collected
information to create a local model of f(x) near xt called ft(x) such that

xt+1 = arg min
x∈K

ft(x) (4)

Properties of ft(x):

• Approximate f(x) “well”

• Easy to optimize

Intuition: For a very complicated function f(x) that we don’t know how to optimize, if we can optimize at
each step, then the number of iterations is very small.

3.1 View Gradient Descent as Local Model

We will follow Gradient Descent framework which assumes Lipschitz-gradient condition in this section. Keep
in mind that the Lipschitz continuous gradient condition may not imply the bounded gradient condition.
For instance, it may be the case that G = O(1), but there is no such bound on the Lipschitz constant of the
gradient of f . Construct the following local approximation function

ft(x) = f(xt) + ⟨∇f(xt), x− xt⟩+ L

2
∥x− xt∥22 (5)

Observation: With xt fixed, ft(x) is a quadratic function in x and is easy to optimize. To solve argminx∈K ft(x),
we take the derivative of ft(x

t+1)

0 = ∇ft(x
t+1) = ∇f(xt) + L(xt+1 − xt) (6)

Solving for xt+1 gives us xt+1 = xt − 1
L∇f(xt).

Observation: This is one form of Gradient Descent in the sense that we need to be careful with the choice
of learning rate to be not too large and we also have L

2 in ft(x) which matches the definition in Gradient
Descent.

When L = ∞, we can suppose no Lipschitz-gradient and let

ft(x) = f(xt) + ⟨∇f(xt), x− xt⟩ (7)

Then, we can try to approach the problem by applying the update rules as follows:

xt+1 := arg min
x∈K

f(xt) + ⟨∇f(xt), x− xt⟩ (8)

A downside of the above is that it is very aggressive - in fact, the new point xt+1 could be very far away
from xt. This is illustrated by considering K = [−1, 1] and f(x) = x2. If started at x = 1, and update using
(8), the algorithm jumps indefinitely between -1 and 1. This is because one of these two points is always
a minimizer of a linear lower bound of f over K. Thus, the sequence xt

t≥0 never reaches 0 - the unique
minimizer of f [1]. Indeed, x = 1 locally is a good local approximation to the original function. However,
the idea of finding argmin over the whole domain implies the x = 1 is a good global approximation while it

2

is not. So, we can adjust the idea by only taking argmin over local neighborhood. The hardest part of this
approach is to define the local neighborhood precisely.

From the example of f(x) = x2, intuitively, we know that we need to move locally and respect the local
information at the same time.

General paradigm of Mirror Descent is to add a regularizer. Let

xt+1 = arg min
x∈K

(D(x, xt) + η(f(xt) + ⟨∇f(xt), x− xt⟩) (9)

= arg min
x∈K

(D(x, xt) + η⟨∇f(xt), x⟩) (10)

Geometric Interpretation: We want to choose a particular point x over the domain K but still respect
two constraints:

• We want x to not move too far away from xt i.e. we want to stay locally. This is controlled by D(x, xt).

• We want x to go along the negative direction of ∇f(xt).

In Sub-Gradient method, we also follow this idea with D(x, xt) = 1
2∥x− xt∥22. In general, it is usually hard

to choose the right distance function.

4 Exponential Gradient Descent

Consider the n-dimensional probability simplex

∆n := {p ∈ [0, 1]n :

n∑
i=1

pi = 1}

and a convex optimization problem

min
p∈∆n

f(p) (11)

From previous sections, we know that the general form of an algorithm we would like to construct is

pt+1 := arg min
p∈∆n

{D(p, pt) + η⟨∇f(pt), p⟩} (12)

Here, D is a distance function on the probability simplex ∆n.

Recall: The two conditions we have for the approximating function is that (1) ft approximates f well; (2) ft
is easy to optimize. Therefore, there are only a few selected distance function D we would consider, although
in this course we want to present a general theory.

Note: In Mirror Descent, there is an important notion of favorable geometry. If your domain is of certain
shape, then the optimization can be done faster. If the domain is of another shape, the optimization will be
slower. In previous lecture, we have mentioned that it would be great to have the domain of Euclidean ball
or simplex as the domain but if the domain is an ℓ∞ ball, then it is terrible.

3

4.1 Kullback-Leibler Divergence

Here we will introduce the Kullback-Leibler divergence as an important example of distance functions. Then
we will extend it to a generalized form and demonstrate some important properties. The definition of the
Kullback-Leibler divergence (KL divergence) over the probability simplex ∆n is as follows:

DKL(p, q) :=

n∑
i=1

pi log
pi
qi

(13)

For the corner cases where pi = 0, we use limx→0+ x log(x) = 0 to obtain the function value (which means
the i-th term is 0). For any qi = 0, we require that pi = 0 too. Sometimes we also write DKL(p, q) as
DKL(p ∥ q) since p and q can be viewed as two probability distributions. KL divergence has many important
properties. Here is an important property we will use latter.

Lemma 1. For any p and q ∈ ∆n, we have

DKL(p, q) ≥ 0, and DKL(p, q) = 0 ⇐⇒ p = q (14)

We can extend the definition of KL divergence to DH on Rn
≥0. For any x, y ∈ Rn

≥0,

DH(x, y) =

n∑
i=1

xi log
xi

yi
+

n∑
i=1

(yi − xi) (15)

If we restrict this function to the probability simplex ∆n, it will become the KL divergence DKL. We need
to notice that even if x or y is not restricted to the probability simplex, we still have DH ≥ 0.

4.2 Algorithm Implementation

After introducing the background, we will discuss the algorithm implementation of EGD in this part. The
pseudo-codes are shown below.

Algorithm 1 Exponential gradient descent (EGD)

1: p0 = 1
n1

2: for t = 0, 1, ..., T − 1 do
3: gt := ∇f(pt)
4: wt+1

i := pti exp (−ηgti)
5: pt+1

i := wt+1
i /∥wt+1∥1

6: end for
7: p̄ := 1

T

∑T−1
t=0 pt

The inputs of the EGD algorithm are

1. The first-order oracle of the convex function f : ∆n → R;

2. The step size (or learning rate in machine learning background) η;

3. The time steps T .

The final output of the EGD algorithm is p̄. The initial solution is set to p0, which is the uniform distribution.
At each time step t, we calculate the gradient gt of the function f , update each entry of p with an exponential
factor e−ηgt

i to get w, and normalize w to get pt+1 (the solution of the next time step). Finally, we obtain
the approximated solution p̄ by averaging all intermediate solutions pi.

4

4.3 Asymptotic Analysis

In this part, we will explore the asymptotic time complexity of EGD given an error bound ϵ. One important
theorem is the accuracy guarantees of EGD. The theorem is as follows:

Theorem 2. Suppose that f : ∆n → R is a convex function, p⋆ is the minimizer of the convex function f(·)
over the set ∆n, and ∥∇f(p)∥+∞ ≤ G for all p ∈ ∆n

1, given an error bound ϵ, if we let

η := Θ

(√
log(n)

G
√
T

)
; T := Θ

(
G2 log(n)

ϵ2

)
, (16)

then we can guarantee that the final approximation error is bounded by ϵ.

f(p̄)− f(p⋆) ≤ ϵ (17)

To prove this theorem, we will introduce several lemmas first.

Lemma 3. Consider an arbitrary vector q ∈ R
n
≥0, and another arbitrary vector g ∈ R

n, the following
optimization problem

w⋆ := arg min
w∈Rn

≥0

(DH(w, q) + η⟨g, w⟩) (18)

has a closed-form solution

w⋆
i = qi exp(−ηgi) (19)

And we have a similar lemma where the variable to be optimized is in ∆n.

Lemma 4. Consider an arbitrary vector q ∈ Rn
≥0, another arbitrary vector g ∈ Rn, the following optimiza-

tion problem

p⋆ := arg min
p∈∆n

(DH(p, q) + η⟨g, p⟩) (20)

has a closed-form solution

p⋆i = w⋆
i / ∥w∥1

Lemma 5. For any p and the uniform distribution p0 in the probability simplex ∆n, we have

DKL(p, p
0) ≤ log(n) (21)

Proof The proof of this lemma is as follows.

DKL(p, p
0)) =

n∑
i=1

pi log

(
pi
1/n

)

=

n∑
i=1

pi log(pi) +

n∑
i=1

pi log(n)

=

n∑
i=1

pi log(pi) + log(n)

1∥x∥+∞ is the supremum norm, which equals to max
i∈{1,..,n}

|xi|

5

Since pi ∈ [0, 1], we have pi log(pi) ≤ 0, thus
∑n

i=1 pi log(pi) ≤ 0 and
∑n

i=1 pi log(pi) + log(n) ≤ log(n).

Lemma 6. For the p̄ obtained from the EGD algorithm and any point p′ ∈ ∆n, we have

f(p̄)− f(p′) ≤ 1

T

T−1∑
t=0

⟨gt, pt − p′⟩ (22)

Proof To prove this, we can firstly relax the left hand side using f(p̄) ≤ 1
T

∑T−1
t=0 f(pt) (Jensen’s inequality,

f(·) is convex, and p̄ is obtained by averaging p0, ..., pT−1), and the fact that f(p′) ≥ f(p) + ⟨∇f(p), p′ − p⟩
for any p and p′ in the domain ∆n (a property of convex functions) in these steps:

f(p̄)− f(p′) ≤ 1

T

T−1∑
t=0

f(pt)− f(p′)

=
1

T

T−1∑
t=0

(f(pt)− f(p′))

≤ 1

T

T−1∑
t=0

⟨∇f(pt), pt − p′⟩

=
1

T

T−1∑
t=0

⟨gt, pt − p′⟩

This inequality shows that the final error f(p̄)− f(p⋆) (substitute p′ with p⋆) can be somewhat bounded by
the gradient g(·). So far, we haven’t use any information given by the fact that p⋆ is the minimizer.

4.4 To Be Continued

Lecture 5 ends here. For more details about the theorem, you can find the rest of the proof in lecture 6 or
the reading material [1].

References

[1] N. K. Vishnoi, Algorithms for convex optimization. Cambridge University Press, 2021.

6

