
EE C227C Convex Optimization and Approximation Lecture 2 - 01/20/2022

Lecture 2: The Complexity of Optimization
Lecturer: Jiantao Jiao Scribe: Ishaq Aden-Ali, Eric Zhao

In this lecture we will discuss two topics: 1) The complexity of minimizing the class of all n-dimensional
ℓ∞-Lipschitz continuous functions, and 2) introduce the notion of convexity which allows us to minimize
non-linear functions via a “local-to-global” phenomena where local information allows us to find global
optima.

1 Minimizing Lipschitz Functions

Suppose that we wish to minimize a function f : Rn → R,

min
x∈Bn

f(x), (1)

where we define Bn to be an n-dimensional box

Bn = {x ∈ Rn | 0 ≤ x(i) ≤ 1, ∀i ∈ [n]}, (2)

where x(i) is the i-th entry of the vector x. Not that for any positive integer n, [n] = {1, 2,, n}. Further-
more, assume that the function f is ℓ∞-Lipschitz which means that for all x, y in the box Bn,

|f(x)− f(y)| ≤ L∥x− y∥∞, (3)

for some L > 0. Here ∥x∥∞ = max1≤i≤n |x(i)| is the ℓ∞ norm. Intuitively, we need to make such an
assumption since this guarantees that the output of the function doesn’t change abruptly when the input is
perturbed slightly.

We now attempt to formuate a “method” to solve our optimization problem. Since we know so little
about the function f , as a first attempt we can try and use the “uniform grid method” which takes as input
a parameter p ≥ 1 (measuring granularity) and does 3 steps:

1. Form a grid consisting of pn points where each point in the grid

xα =


2i1−1
2p

2i2−1
2p
...

2in−1
2p


is parameterized by some α = (i1, i2, . . . , in) ∈ [p]n, where 1 ≤ ij ≤ p.

2. Among all the points xα in the grid, find the point x̄ with the smallest objective function value.

3. Output (x̄, f(x̄)).

The uniform grid method we have described is quite simple, but how well does it perform? The following
theorem gives us an upper bound on the error of our output (x̄, f(x̄)).

1

Theorem 1. Let f∗ = minx∈Bn
f be the global optimal value. Then,

f(x̄)− f∗ ≤ L

2p
. (4)

The quantity on the left hand side of equation (4) is referred to as the “suboptimality gap”. Notice that
this can never be negative since f∗ is the global optimum. We now prove Theorem 1.

Proof We begin by first splitting the box Bn into sets Xα = {x ∈ Bn | ∥x− xα∥∞ ≤ 1/2p}. Notice that
the sets Xα partition Bn, i.e.

Bn =
⋃

α∈[p]n

Xα. (5)

Let x∗ be a global solution obtaining the value f∗. Notice that there must be an index α∗ such that x∗ ∈ Xα∗ ,
which implies that ∥x∗ − xα∗∥∞ ≤ 1/2p. We can thus conclude that

f(x̄)− f(x∗)

≤ f(xα∗)− f(x∗)

≤ L∥x∗ − xα∗∥∞
≤ L

2p

x̄ minimizes the objective over all xα

ℓ∞-Lipschitz assumption

We can better interpert this result by asking what we need to set the granularity p to be in order to get ϵ
error. In other words, we want to find x̄ ∈ Bn such that f(x̄)− f∗ ≤ ϵ. We immediately obtain the following
corollary from Theorem 1.

Corollary 2. The analytical complexity1 of the problem is upper bounded by(⌊
L

2ϵ

⌋
+ 1

)n

(6)

Proof This is an immediate consequence of the accuracy of the uniform grid method. Set p = ⌊L/2ϵ⌋+1,
which implies that p ≥ L/2ϵ. From Theorem 1 it follows that

f(x̄)− f∗ ≤ L

2p
(7)

≤ ϵ. (8)

In optimization, for high accuracy we should think of ϵ being in the range 10−6 to 10−8. So the analytic
complexity achieved by the uniform grid method seems to be very pessimistic. Perhaps surprisingly, it turns
out that in some sense this is the best we can achieve. Before we prove this, we need to introduce the notion
of a resisting oracle.

Definition 3. A Resisting Oracle is an adversary that answers each call of the method in the worst possible
way that is compatible with previous answers. Once the method is done making calls to the oracle, the oracle
constructs a problem instance with the lowest possible accuracy that perfectly fits all the information collected
by the method (queries and answers).

2

Problem Setting
Model minx∈Bn f(x) where f is ℓ∞-Lipschitz
Oracle Zero-order, when model queries x and receives f(x)
Goal f(x̄)− f∗ ≤ ϵ

Figure 1: A table summarizing the problem setting.

Under the assumption that the answers to queries made by the method come from a resisting oracle, we
can show a lower bound on the analytical complexity of any method in this setting.

Theorem 4. For ϵ < L
2 , the analytical complexity of optimizing the class of ℓ∞-Lipschitz functions is at

least ⌊
L

2ϵ

⌋n

. (9)

Proof Let p =
⌊
L
2ϵ

⌋
≥ 1. Recall our partitioning of Bn into sets Xα. Assume there is a method M which

needs N < pn calls to the oracle to guarantee that it solve all problems in the class. We will apply this
method against a resisting oracle which answers every queried point x ∈ Bn with f(x) = 0. Because there
are pn choices for α and N < pn, there must exist an index α̂ such that no query was made to any point in
Xα̂. We will thus construct the function

f̂(x) = min{0, L∥x− xα̂∥∞ − ϵ}. (10)

It is easy to verify that this function is ℓ∞-Lipschitz with constant L, and that the global optimum value
is f̂∗ = −ϵ which is attained at xα̂. Furthermore, f̂ differs from 0 only inside the set Xα̂, so this function
agrees with the previous answers given by the oracle. Since the method M claims the minimum value is 0,
the accuracy of any method that uses N < pn calls cannot be better than ϵ. Thus, any method achieving
error less than ϵ must make N ≥ pn =

⌊
L
2ϵ

⌋n
calls.

To summarize, we have seen that the uniform grid method achieves an upper bound of
(⌊

L
2ϵ

⌋
+ 1

)n
on

the analytical complexity for this optimization problem, and (assuming a resisting oracle) there is a lower
bound of

⌊
L
2ϵ

⌋n
(for ϵ small enough). So if one wants to stick with black box optimization, we need more

assumptions about our function class to get better methods.

2 Convexity

The importance of convexity comes out when we want to work with blackbox algorithms for optimization,
which implies some kind of local method. We will discuss natural assumptions for a local method and show
this leads to the convex property.

First, we propose the following natural assumptions on a function family F that we hope to optimize
over.

1. For any f ∈ F , we want a first order optimality condition. In other words, ∇f(x∗) = 0 if and only if
x∗ is a globally optimal. This is one weak way of restricting ourselves to a local-type search method.

2. Linear combinations are closed in F . Formally, if f1, f2 ∈ F , then for any α, β ≥ 0 we want to guarantee
that αf1 + βf2 ∈ F .

1See lecture 1 notes for the definition of analytical complexity.

3

3. F should contain all linear functions. In other words, any function that can be written as ℓ(x) =
⟨a, x⟩+ b ∈ F for any a, b in our field.

We now argue that these three properties are enough to recover the property of convexity. The proof will
also lead us to recover one definition of convexity.

Theorem 5. Any function f ∈ F where F satisfies all properties (1), (2), and (3) is convex.

Proof Take any function f ∈ F . Assume we are working in the reals and fix a choice of x0 ∈ Rn. Then
consider the hypothetical function ϕ defined as,

ϕ(y) = f(y)− ⟨∇f(x0), y⟩. (11)

We now claim ϕ(y) ∈ F . −⟨∇f(x0), y⟩ is a linear function and therefore in F by property (3). Since ϕ(y) is
then the sum of two functions in F , by property (2), ϕ is also in F .

Next, we use property (1) to work with a first-order-condition on ϕ. Consider its gradient of ϕ(y) at
y = x0,

∇ϕ(y)|y=x0 = ∇f(x0)−∇f(x0) = 0 (12)

By property (1), ϕ(y) has a global optimum at x0. Therefore, for any other y in the domain of f

ϕ(y) ≥ ϕ(x0) = f(x0)− ⟨∇f(x0), x0⟩. (13)

Substituting the definition of ϕ into the left-hand-side and rearranging, we obtain,

f(y) ≥ f(x0) + ⟨∇f(x0), y − x0⟩. (14)

Noting that Equation 14 exactly describes a convex function concludes our proof.

We can formalize our derivation of a convex function with the following definitions.

Definition 6. A set Q ⊆ Rn is called convex if for any x, y ∈ Q and α ∈ [0, 1], we have that αx+(1−α)y ∈ Q.

Definition 7. A continuously differentiable2 function is called convex on a convex set Q, with notation
f ∈ F1(Q), if for any x, y ∈ Q,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩. (15)

At a high-level, an important idea around convexity is that if you want a local method and need to
exploit property (1), you might as well assume convexity. There are some contradictions of this, such as in
deep neural networks.

We now consider some useful algorithms that exploit convexity, which we will refer to as first-order
algorithms. Today, we will discuss gradient descent.

First, we make the following assumptions on our function f .

1. f is convex.

2. Gradient of f is L-Lipschitz continuous if for all x, y in the domain of f ,

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥. (16)

For now, we will assume these norms are all Euclidean; we will revisit this in a later lecture.

2Continuous differentiability may not be necessary, but we will assume this for now.

4

Instead of assuming Lipschitz continuity, you could argue for a norm bound on ∇f : ∃B, ∀x : ∥∇f(x)∥ ≤
B. This might make more sense in than Lipschitz continuity in some contexts, and we’ll analyze gradient
descent using this property in later lectures. However, for now, we focus on Lipschitz continuity. The
following lemma makes clear why we opt for this assumption.

Lemma 8. (Theorem 2.1.5 in Nesterov [1]) A function satisfying convexity and gradient L-Lipschitz conti-
nuity has the following three interpretations,

1. f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L
2 ∥x− y∥2

This tells us that the function f is upper-bounded by the sum of a line and a quadratic function. If L is
small, the upper bound is tighter as the non-negative quadratic term shrinks. As L → ∞, our Lipschitz
continuity assumption tells us less about f and the bound becomes meaningless.

2. f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ 1
2L∥∇f(x)−∇f(y)∥2

This interpretation shows that f(y) is also lower-bounded by a linearly supported function.

3. ⟨∇f(x)−∇f(y), x− y⟩ ≥ 1
L∥∇f(x)−∇f(y)∥2

When L → ∞, this tells us that the left hand side is lower-bounded by zero. This means that, once we
move along a certain direction, the change in gradient is always aligned with our movement direction.

Now we describe a greedy algorithm for gradient descent.

1. Start with a datapoint x0 ∈ Rn.

2. For subsequent steps, k ≥ 0, update our point to

xk+1 = xk − hk∇f(xk). (17)

where hk is our learning rate at timestep k.

Lemma 9. Assume f is convex and its gradient is L-Lipschitz. The sequence xk produced by the greedy
gradient descent algorithm with learning rate h satisfies, at each timestep k ≥ 0,

f(xk+1)− f(xk) ≤ −h(1− Lh

2
)∥∇f(xk)∥2. (18)

This guarantee explains the ‘descent’ in gradient descent. We will go over the proof of gradient descent
in the next lecture.

5

References

[1] Y. Nesterov, Introductory lectures on convex optimization: A basic course. Springer Science & Business
Media, 2003, vol. 87.

6

