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In this lecture, we give basic introductions to the course. One can also refer to chapter 1.1 in [1].

1 Formulation

A general nonlinear optimization problem can be written as:

min f0(x) (1)

s.t. fj(x) & 0, j = 1, 2, 3, . . . ,m (2)

x ∈ Q, (3)

where & ∈ {≥,≤,=}. The set Q is referred to as the basic feasible set. We define f(x) := (f1(x), . . . , fm(x))
as the vector of functional constraints, and we remark that the entire feasible region can be expressed as

{x ∈ Q | fj(x) & 0, j = 1, 2, 3, . . . ,m} . (4)

The problem is said to be smooth, if every fj(x), for j ∈ [m] ∪ {0}, is differentiable. Otherwise, we say that
the problem is non-smooth.

2 Application

Nonlinear optimization is almost universal. Below, we give several modeling examples.
Example 1 (Fitting). Suppose we want to find x ∈ R such that fj(x) = aj ∈ R for all j ∈ [m]. We can
define the following problem

OPT = min
x∈Rn

m∑
j=1

(fj(x)− aj)
2
, (5)

so that OPT = 0 indicates a perfect fit can be found. Otherwise, the problem is infeasible.
Example 2 (Integer optimization). The integral constraints can be modeled using trigonometric functions.
For example,

min f0(x) (6)

s.t. sin
(
πx(i)

)
= 0, 1 ≤ i ≤ n, (7)

where we denote x =
(
x(1), x(2), . . . , x(n)

)
.

During 1950’s, people are excited about nonlinear optimization. However, in 1970’s, it was shown that
even for Lipschitz functions, the problem is not solvable in a precise sense. Therefore, suitable evaluation
metrics are required to evaluate the performance of numerical methods.

3 Performance Evaluation of Numerical Methods

We first remark that, a well-defined performance evaluation for a method M should not only work for a
particular problem P , but a class of problems P.
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Definition 3 (Model). The model of problem P, denoted by Σ, is defined as the known part of P.

Definition 4 (Oracle). The oracle, denoted by O, answers questions of the method M.

In practice, there are usually three kinds of oracles:

• Zero-order oracle, which sends back f(x) given x.

• First-order oracle, which sends back (f(x),∇f(x)) given x.

• Second-order oracle, which sends back
(
f(x),∇f(x),∇2f(x)

)
given x.

In general, the components of a problem P can be represented by a three-tuple (Σ,O,M). The perfor-
mance of M on P is defined as the total amount of computational effort required by M to solve P. To
be specific, solve refers to finding an approximate solution with accuracy ε. Hereby, we define the stopping
criterion, denoted by τε, such that we stop the computation when τϵ is true.

To give a definition for the computational efforts, we need to first introduce what is a Generic Iterative
Algorithm. A generic iterative algorithm consists of the following parts:

• Input: starting point x0, accuracy ε > 0.

• Initialization: k = 0, information set F−1 = ∅.

• Loop:

1. Call oracle at point xk.

2. Update the information set Fk = Fk−1 ∪ (xk,O(xk)).

3. Apply method M to Fk and generate a new point xk+1.

4. Check τε. If yes, output x̄. Otherwise, set k = k + 1 and go to step 1.

Now, we define the computational efforts by the following two complexity measures.

Definition 5 (Analytical complexity). The analytical complexity, which is also called the information based
complexity, is defined as the number of calls to the oracle during the computation.

Definition 6 (Arithmetical complexity). The arithmetical complexity is defined as the number of arithmetic
operations, including the work of oracle and the work of the method, which is necessary to solve the problem
up to accuracy ε.

4 Summary

In this lecture, we give basic introductions to the course, including the generic formulation of a nonlinear
optimization problem, applications of nonlinear optimization, and the performance evaluation of numerical
methods. In the next lecture, we will

• Show the complexity of minimizing the class of Lipschitz continuous functions.

• Introduce convexity.
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