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Lecturer: Jiantao Jiao Scribe: Shafeeq Ibraheem

We first present solutions to the non-causal and causal Wiener filtering problems in the vector case instead
of the WSS process case, and discuss the similarities of this setting to the WSS setting.

Then, we talk about the prediction problem in WSS processes and present a solution using spectral
factorization. In this lecture, all the random variables are generally complex-valued.

1 Non-causal Wiener Filter in the Vector Case

To avoid the necessity of z-transform and convergence arguments, we consider the analogue of Wiener filtering
in the vector case, where the signal we want to estimate is X = (X1, X2, . . . , XN )> and the observation we
have is Y = (Y1, Y2, . . . , YN )>. Note that we have constrained that X and Y have equal length, since we
want them to have shared time indices so that we can formulate a causal filter problem.

1.1 Non-causal Wiener filter (smoothing problem)

The natural question of non-causal Wiener filter would be to use the whole vector Y to estimate every entry
of X. In other words, we would like to use estimator

X̂ = KsY ∈ CN

to estimate X. It follows from the orthogonality principle that for each i, l ∈ [N ],

E[(Xi −
N∑
j=1

Ks,ijYj)Y
∗
l ] = 0,

which is equivalent to the matrix equation

RXY = KRY ,

where

RXY = E[XY ∗]

RY = E[Y Y ∗],

and ∗ denotes the conjugate transpose operation.
Clearly, if RY > 0, then Ks is given by

Ks = RXYR
−1
Y .

Note that we did not assume X,Y are zero-mean.

1.2 Causal Wiener filter [KSH00, Chapter 4.1.2]

To estimate Xi, we would like to use

X̂i =

i∑
j=1

Kf,ijYj .
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In other words, the estimate X̂i is only allowed to causally depend on Y : it is a function of Y1, Y2, . . . , Yi
only. In other words, Kf,ij = 0 for any j > i.

It follows from the orthogonality principle that for any i ∈ [N ], 1 ≤ l ≤ i,

E[(Xi −
i∑

j=1

Kf,ijYj)Y
∗
l ] = 0,

which is equivalent to

RXY (i, l) =

i∑
j=1

Kf,ijRY (j, l) for 1 ≤ l ≤ i.

The 1 ≤ l ≤ i constraint tells us this relationship only holds for the lower triangular portion of these matrices.
From this we derive the vector case Wiener-Hopf equation.

We introduce the operator []L: given a square matrix H, [H]L zeros out all of the entries of H in the
strict upper triangular part. This is very similar to the []+ operation we used in the scalar causal Wiener
filter.

We can succinctly write the Wiener-Hopf equation as

[RXY −KfRY ]L = 0

Analogously to the causal Wiener filtering solution using spectral factorization in WSS processes, here
we use the LDL decomposition to solve it. The LDL decomposition is closely related to the Cholesky
decomposition.

Theorem 1 (LDL decomposition). If matrix H is positive definite, then there exists a unique lower-diagonal-
upper triangular factorization of H:

H = LDL∗,

where L is lower triangular with unit diagonal entries, and D is diagonal with positive entries. Both L,D
are invertible. Here ∗ is the conjugate transpose of a matrix, which is obtained from taking the transpose and
then taking the complex conjugate of each entry.

We emphasize that the LDL decomposition solution to the causal filter problem here is not only concep-
tually important but also numerically efficient.

Now we continue to present the solution of causal filter problem. Writing the Wiener–Hopf equation
without the []L operator:

RXY −KfRY = U+

Where U+ is some strictly upper triangular matrix.
Assuming RY > 0, we have the LDL decomposition as

RY = LDL∗,

which implies

RXY −KfLDL
∗ = U+.

Since L,D are invertible,

RXY L
−∗D−1 −KfL = U+L−∗D−1
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Since Kf and L are both lower triangular matrices, KfL is also lower triangular. Since L is lower
triangular, L∗ is upper triangular–its inverse L−∗ is upper triangular as well. Since D is diagonal and U+ is
strictly upper triangular, U+L−∗D−1 is also strictly upper triangular. If we then apply the []L operator to
the above equation, we get:

[RXY L
−∗D−1]L −KfL = 0

We have shown that

Kf = [RXY L
−∗D−1]LL

−1

How is it related to the non-causal Wiener filter? Indeed, in the non-causal case we have

Ks = RXYR
−1
Y

= RXY L
−∗D−1L−1

= Kf + [RXY L
−∗D−1]strict upper triangular partL

−1

The interested readers must have observed that we have made a strong assumption here: RY > 0.
Indeed, even for positive semidefinite matrices the LDL decomposition also exists (may not be unique), but
it cannot be generally used to construct casual filter: in those cases L may not even have a lower-triangular
pseudoinverse.

2 Prediction Problem

Consider a zero-mean WSS process X, and we would like to predict Xn using Xn−1, Xn−2, ..., X−∞. We can
cast this as a causal Wiener filter with Yn = Xn−1. The transfer function of the casual Wiener filter from Y
to X is

H(ω) =
1

S+
Y (ω)

[
SXY (ω)

S−Y (ω)

]
+

Now it suffices to evaluate this formula in the special case of Yn = Xn−1. We have

RXY (k) = E(XnY
∗
n−k)

= E(XnX
∗
n−k−1)

= RX(k + 1)

RY (k) = E(YnY
∗
n−k)

= E(Xn−1X
∗
n−k−1)

= RX(k)

It implies that

SXY (ω) = ejωSX(ω)

SY (ω) = SX(ω)

Plugging these into the formula:

H(ω) =
1

S+
X(ω)

[
ejωSX(ω)

S−X(ω)

]
+

=
1

S+
X(ω)

[ejωS+
X(ω)]+
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We can simplify this further by looking at S+
X(ω). We know this is a causal signal, and can be represented

as:

S+
X(ω) = p0 +

∑
k≥1

pke
−jωk, (1)

where p0 =
√
re > 0. Hence,

[ejωS+
X(ω)]+ = (S+

X(ω)− p0)ejω

Plugging this back into the formula for H(ω), we obtain

H(ω) = (1− p0

S+
X(ω)

)ejω

We now have the transfer function for optimal causal filter from Y to X. However, the input to the filter is
X instead of Y , so the output should be delayed by one unit, resulting in the optimal prediction filter:

H(ω) = (1− p0

S+
X(ω)

).

It can be shown that if we would like to predict Xn using all the information up to Xn−τ , the optimal
prediction filter is given by

Hτ (ω) =

∑∞
k=τ pke

−jωk

S+
X(ω)

,

where S+
X(ω) is given by (1).

We finish our discussions on the prediction filter by computing the spectrum of the error process En =
Xn − X̂n. This can be understood as passing X through a filter 1−H(ω). It implies that

SE(ω) = |1−H(ω)|2SX(ω)

= |1− (1− p0

S+
X(ω)

)|2SX(ω)

=
p20

|S+
X(ω)|2

SX(ω)

= p20.

We see SE(ω) is a constant, which means that the process En is a white noise process with variance p20.
That is why in the literature the process En is called innovation process: it captures the innovation part of
Xn given all of its history up to times n− 1, and is a white noise process.

3 Generalizations of the prediction problem

Consider the following generalizations of the prediction problem. Say we have

Yi = Si + Vi, (2)

where 〈Vi, Vj〉 = rδij , 〈Vi, Sj〉 = 0. In other words, SV (z) = r, SV S(z) = 0. Furthermore, we have SSY (z) =
SS(z), SY (z) = SS(z) + SV (z) = SS(z) + r. Our goal is to estimate Si using all the information of {Yj}j≤i.
It is a causal Wiener filter problem, and the solution is given by

Kf (z) =

[
SSY (z)

L∗(z−∗)

]
+

1

reL(z)
, (3)
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where SY (z) = L(z)reL
∗(z−∗) is the canonical spectral factorization of Y . We can simplify it by

Kf (z) =

[
SSY (z)

L∗(z−∗)

]
+

1

reL(z)
(4)

=

[
SY (z)− r
L∗(z−∗)

]
+

1

reL(z)
(5)

=

[
L(z)re −

r

L∗(z−∗)

]
+

1

reL(z)
(6)

=

(
[L(z)]+ −

[
1

L∗(z−∗)

]
+

r

re

)
1

L(z)
(7)

Since L(z) is causal, we have [L(z)]+ = L(z). Since 1
L∗(z−∗) is anticausal and L∗(z−∗)|z=0 = 1, we have[

1
L∗(z−∗)

]
+

= 1. Then we have

Kf (z) = 1− r

re
L−1(z). (8)

One might wonder about the filter that yields the optimal estimate of Si given {Yj}j≤i−1. Noting that
the optimal linear estimator of Si given this history is the same as the optimal linear estimator of Yi given
this history, so this problem is equivalent to the canonical prediction problem we just studied, which has
filter

Kp(z) = 1− L−1(z). (9)

Note that both filters take the Y process as input and outputs

(h ∗ Y )n =

∞∑
j=−∞

h(j)Yn−j . (10)
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