
EECS 225A Statistical Signal Processing Lecture 25 - 4/28/2020

Lecture 24: CKMS Recursion
Lecturer: Jiantao Jiao Scribe: Milo Webster and Shafeeq Ibraheem

The Kalman Filter has a nice property, being that we can allow the state space model parameters (F ,
G, etc.) to be time variant, and the Kalman Filter formulas look the same. This is quite powerful because
we do not require any stationarity assumptions when we apply Kalman filter. This is partly why Kalman
Filtering became so popular in its early days.

Previously we also discussed how this particular advantage could be viewed as a disadvantage. In this
lecture we discuss how, when we know that our parameters are time invariant, we can speed up computation
of the Kalman Filter. This method is called the Fast Algorithm for Kalman Filtering, also known as CKMS
Recursion [KSH00, Chapter 11].

1 Motivation

We first consider the standard state space model, in which we treat the parameters as constant:{
Xi+1 = FXi +GUi, i ≥ 0

Yi = HXi + Vi
(1)

With second order statistics as reflecting constant parameters:

〈

UiVi
X0

 ,
UjVj
X0

〉 =

Qδij Sδij 0
S∗δij Rδij 0

0 0 Π0

 (2)

In the past we haven’t emphasized the dimension of the variables. Here, we assume the following dimensions:

Xi ∈ Cn×1 (3)

Yi ∈ Cp×1 (4)

Ui ∈ Cm×1 (5)

And in general we have the following properties:

p ≤ n (6)

m ≤ n (7)

The first property (p ≤ n) is the case because our state summarizes everything that we know. And we can
view Y as a reduced observation: a partial observation of the state. It follows from this that it would be
ridiculous to assume that the dimension of this observation is larger than that of our state, considering it
captures less information.

The second property (m ≤ n) is the case because m is the dimension of our input, and this input together
with the parameter G has an equivalent dimension to our state. And so having the dimension of the input
be larger than our state doesn’t make sense given that the same (in terms of what the state sees) could be
represented in a lower dimension, given that the state only sees the dimension of G’s rows.

2 Computational Complexity of the Kalman Filter

We first look at the computational complexity of the regular Kalman Filter, for a baseline to compare our
”fast” version to. For the predictor version of the Kalman Filter, we have the following system:

1

ei = Yi −HX̂i (8)

X̂i+1 = FX̂i +KiR
−1
e,i ei, X̂0 = 0 (9)

Note that here we use the term KiR
−1
e,i in place of Kp,i because it will later facilitate our derivation of the

”fast” recursion. Please do not confuse Ki with either the predicted/filtered Kalman gain. We can compute
these two new terms according to the following formulas:

Ki = FPiH
∗ +GS (10)

Re,i = R+HPiH
∗ (11)

Pi+1 = FPiF
∗ +GQG∗ −KiR

−1
e,iK

∗
i a, P0 = Π0, (12)

which was derived when we introduced the predicted version Kalman filter.
Now, in general, the biggest computational complexity is in computing the Pi+1. For example, the first

term (FPiF
∗) consists of 3 matrix multiples, each having dimension n × n. With the naive/brute force

computation, the complexity is O(n3). This computation, in general, is the bottle neck for naive/brute force
computation.

3 Reducing the Computational Complexity

The key idea, here, is that propogating Pi is bad. We should define recursions for δPi, instead of for Pi
directly, which we define as follows:

δPi , Pi+1 − Pi, i ≥ 0 (13)

Previously we used the Ricatti equation to go from Pi to Pi+1, but now we need to know how to go from
δPi to δPi+1. This is addressed in the following theorem.

Recall that we have defined

Fp,i , F −KiR
−1
e,iH. (14)

Theorem 1. Generalized Stokes Identity]

δPi+1 = Fp,i[δPi − δPiH∗R−1
e,i+1HδPi]F

∗
p,i (15)

This theorem immediately implies that

rank(δPi+1) ≤ rank(δPi) (16)

This observation, that the rank of δPi will not increase with i, is possibly the most significant observation
in the derivation of the ”fast” algorithm. And now, if we can show that the rank of δP0 is low rank, then we
have an opportunity to eliminate unnecessary computation in this recursion via low rank matrix computation.

Now to derive δP0, we have the following (where P0 = Π0 and P1 is computed using the Ricatti equa-
tions):

δP0 = P1 − P0 (17)

δP0 = FΠ0F
∗ +GQG∗ −K0R

−1
e,0K

∗
0 −Π0 (18)

Our goal is to claim that this expression is low rank, which we can do by breaking it into a number of cases.
Note that in all of these cases (and the entire lecture), we assume that R > 0.

Case 1: Π0 = 0

2

δP0 = 0 +GQG∗ −K0R
−1
e,0K

∗
0 + 0 (19)

δP0 = G(Q− SR−1S∗)G∗ (20)

The matrix G, here, first appeared from our state equation Xi+1 = FXi +GUi. From this we know
that G has dimension n×m. And therefore, we have that:

rank(δP0) ≤ m (21)

Which implies that the rank of δP0 in this case is small.

Case 2: Stationary Process

By stationary process we mean that we choose the initial variance Π0 such that our state Xi is a
stationary process. We can do this by ensuring that Π0 satisfies the Lyapunov Equation,

Π0 = FΠ0F
∗ +GQG∗ (22)

which has a PSD solution if all the eigenvalues of F lie in the unit disk |λi| < 1. It’s important to note
here that initializing at Π0 does not make a Kalman Filter a time-invariant filter. Our KF still takes
time to converge to a particular (time-invariant) filter. Now, in this case we can also easily compute
δP0:

δP0 = −K0R
−1
e,0K

∗
0 (23)

Now note that K0 = FΠ0H
∗ +GS, where F has dimension n× n and the dimension of H∗ is n× p,

which gives that K0 has dimension n× p. This then tells us that,

rank(δP0) ≤ p (24)

Now, we can apply this knowledge to the following theorem:

Theorem 2. Propogation of δPi] If we factorize δP0,

δP0 = L0M0L
∗
0 (25)

Where, rank(δP0) = α. And we require the matrix L0 to meet,

L0 ∈ Cn×α (26)

Then we want this M0 to be Hermitian, meeting

M0 ∈ Cα×α (27)

Then we have that,

Li+1 = (F −KiR
−1
e,iH)Li = Fp,iLi (28)

Mi+1 = Mi −MiL
∗
iH

∗R−1
e,i+1HLiMi, i ≤ 0 (29)

Proving this theorem is actually quite simple because we can use the Stoked Identity. To understand the
above equation we can first look at δP0. Given rank α of this term, we can actually factorize it into this form
with computational complexity O(n2α), where previously (in the general case) we need O(n3). Now, for
the computational complexity of Li+1, we see that Fp,i has dimension n× n, while Li has dimension n× α.
This results in a complexity of O(n2α), just like for δP0. Finally, we address the complexity of Mi+1, but
we actually don’t really care what this term’s complexity is because in reality it is usually quite small. Even
though it has complexity O(max(α3, αnp, np2)), where α is generally small. Now, after this propagation of
δPi, we address a related topic to round out our understanding.

3

Theorem 3. CKMS Recursion

Ki+1 = Ki − FLiR−1

r,i L
∗
iH

∗

Li+1 = FLi −KiR
−1
e,iHLi

Re,i+1 = Re,i −HLiR−1
r,i L

∗
iH

∗

Rr,i+1 = Rr,i − L∗
iH

∗R−1
e,iHLi

(30)

Conditioned on,

Rr,i , −M−1
i (31)

Pi+1 = P0 +

i∑
j=0

δPj = Π0 −
i∑

j=0

LjR
−1
r,jL

∗
j (32)

Initialized with,

Π0 →

K = FΠ0H

∗ +GS

Re,0 = R+HΠ0H
∗

δP0 = P1 − P0

(33)

4 Array Algorithm for CKMS Recursion

We deal with a special case, being that Π0 = 0. Now, we know that,

δP0 = P1 − P0 = G(Q− SR−1S∗)G∗ (34)

δP0 = GQSG∗ = L̄0L̄
∗
0 (35)

Where we have:

L̄0 , G(QS)
1
2 (36)

Note that we have dimensions here for L̄0 of n×m, where α ≤ m. And we want to speed up computation
of:

δPi = Pi+1 − Pi = L̄iL̄
∗
i (37)

We can do this with the following methods:(
R

1
2
e,i HL̄i

K̄p,i FL̄i

)
H =

(
X 0
Y Z

)
(38)

Where H is an orthogonal unitary matrix and K̄p,i , Kp,iR
− ∗

2
e,i . We can verify this result by showing that,

given equivalence with A = B, AA∗ = BB∗. This gives the following:

X = R

1
2
e,i+1

Y = K̄p,i+1 = Kp,i+1R
− ∗

2
e,i+1

Z = L̄i+1

(39)

Now we need to show that the dimension of the matrix for this array algorithm is much smaller, in order
for it to achieve a speedup. Observe that Re,i measures the variance of the innovations, having dimension p.
K̄p,i has n rows, because Kp,i takes the observation Y to have the state dimension n. So the full K̄p,i matrix
is n× p. Then, the dimension of H is p× n, while the dimension of L̄i is n× α. And so HL̄i has dimension
p× α. Given these we can observe that our block matrix that is multiplied with the unitary matrix H has
dimension (p+ n)× (p+m). The complexity of the array algorithm can be found in [KSH00, Page 54].

4

References

[KSH00] Thomas Kailath, Ali H Sayed, and Babak Hassibi. Linear estimation. Prentice Hall, 2000.

5

