
EECS 225A Statistical Signal Processing Lecture 18 - 3/31/2020

Lecture 18: H2 and H∞ Estimation Theory
Lecturer: Jiantao Jiao Scribe: Milo Webster

In this lecture we explore H2 and H∞ estimation. These topics are important because they provide
a unified view towards the optimal linear estimation theory and adaptive filtering theory. For example, it
shows the recursive least squares solution is H2 but not H∞ optimal, and the Least Mean Square (LMS)
algorithm is H∞ but not H2 optimal. The materials in this lecture are mainly based on [HSK99, Chapter
10].

Note: ”H” stands for Hardy Space

1 Background

We are used to using certain norms to quantify the magnitude of a signal. For example, the `2 norm of a
signal v(t) would be defined as:

‖v(t)‖2 =

√∑
t

Tr(v(t)v(t)∗)

Similarly we can consider system norms, some of which we introduce below.

1.1 A family of linear estimation problems

The following diagram captures a fairly general setting of linear estimation.

H + K

L

ui
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vi
ŝi
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Figure 1: Decomposition of a Linear Estimation Problem

In this diagram we have the following signals and systems. It captures two cases: in one case, all signals
are finite-dimensional, and the corresponding systems are matrices; in the other case, all signals are WSS
processes, and all systems are LTI systems with the system symbol denoting its transfer function.

1. ui: some unobserved input stochastic process

2. H: a known causal linear system

3. L: a known causal linear system

4. vi: additive white noise

5. K: the transfer function (could be either causal, or non-causal) that estimates si using the observations
{yj}, the estimate is denoted by ŝi

6. ŝi: our estimate of si

7. si: quantity to be estimated
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Now, in order to cast this problem in terms of H2, H∞ theory, we must define system that maps ui and
vi to the final ŝi.

1.2 Derivation of Linear System Representing this Estimate

We now define a linear system TK that performs the following map, where s̃i is the estimation error at time
step i:

(
u
v

)
−→ s̃i , si − ŝi (1)

Now we derive TK’s transfer function:

s̃ = s− ŝ (2)

= Lu−K(Hu+ v) (3)

= (L −KH)u−Kv (4)

=
[
L −KH −K

] [u
v

]
(5)

= TK
[
u
v

]
(6)

where

TK =
[
L −KH −K

]
(7)

Since s̃ represents the estimation error, and the inputs are fixed with known first and second order
statistics, the filter K being a good estimator should be equivalent to saying that the norm of the system
TK is small in some sense. What norm shall we consider here?

1.3 H2 Norm of System TK
A natural target is to see what norm the usual optimal linear estimation theory corresponds to. We show
that it corresponds to the H2 norm of the system TK. We distinguish two cases: finite-horizon and infinite
horizon.

1.3.1 Finite-horizon

In this case we have that u,v,y are finite dimensional vectors, and TK is a finite matrix, and we define its H2

norm as its Frobenius Norm:

‖TK‖H2 , ‖TK‖F = (Tr(TKT ∗K))
1
2 = (

∑
i,j

‖TK,ij‖2F )
1
2 , (8)

here TK,ij is the block (i, j) of matrix TK. In other words, TK,ij maps [uj , vj ]
T to s̃i, and ‖TK,ij‖2F =

Tr(TK,ijT ∗K,ij).

1.3.2 Infinite-horizon, time-invariant

Here, all of the systems described become LTI systems and all the processes become WSS processes, and we
have that:

‖TK‖H2 , (
1

2π

∫ π

−π

∥∥TK(ejω)
∥∥2
F
dω)

1
2 (9)
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where

TK(ejω) ,
+∞∑
i=−∞

TK,ie−jωi (10)

And by Parseval’s Identity, we can also write the H2 norm as:

‖TK‖H2 = (

+∞∑
i=−∞

‖TK,i‖2F )
1
2 (11)

In the infinite-horizon case what we are doing is first computing the DTFT, then for every ω with compute
the square of the Frobenius norm and take the average. That is where the name H2 comes from.

2 H2 Estimation

The widespread use of H2 theory is mainly due to the facts that optimal H2 problem has a simple closed-
form solution and as we show below, it can be interpreted as optimal linear estimation under squared error
loss function. In particular, we look at the following optimization problem:

min
K
‖TK‖H2 (12)

We first show the H2 norm of TK is exactly the mean squared error in estimating si.

Theorem 1. [HSK99, Lemma 10.3.1] Given white noise processes ui, vj (i.e. E[

[
ui
vi

] [
u∗j v∗j

]
] = 〈

(
ui
vi

)
,

(
uj
vj

)
〉 =

Iδij). Then,

1. Finite-horizon case

‖TK‖2H2 = E[

N∑
i=0

|s̃i|2] (13)

2. Infinite-horizon case

‖TK‖2H2 = E[|s̃i|2] (14)

This theorem beautifully shows that, for any estimator K, if we compute the corresponding H2 norm of
our transfer function TK, then in both finite and infinite horizon cases, this captures the expected estimation
error corresponding to a squared loss function.

Proof First we consider the finite-horizon case (though the infinite-horizon is very similar):

N∑
i=0

|s̃i|2 =
(
u∗ v∗

)
T ∗KTK

(
u
v

)
= Tr(T ∗KTK

(
u
v

)(
u∗ v∗

)
) (15)

Taking expectations on both sides, we have

E[

N∑
i=0

|s̃i|2] = Tr(T ∗KTK) = ‖TK‖2H2 (16)

3



After showing the connection between H2 estimation, we already know the answer to the optimal H2

estimation problem since it is exactly Wiener filter. We would like to offer an algebraically different proof
for the non-causal case here to obtain a crisp formula in this case, since it will be useful for later discussions
on H∞ estimation.

We can verify algebraically

TKT ∗K = (K − LH∗(I +HH∗)−1)(I +HH∗)(K − LH∗(I +HH∗)−1)∗ + L(I +H∗H)−1L∗ (17)

If we denote

K0 = LH∗(I +HH∗)−1 (18)

then it shows for any K

TKT ∗K ≥ TK0
T ∗K0

(19)

since the first term on the RHS is positive semidefinite. Note that this inequality means that for any
disturbance u, v and transfer operators K, the operator K0 results in the smallest estimation error energy
pointwise, not only in expectation! Clearly, K0 also minimizes the trace of TKT ∗K , showing that it is a solution
to the H2 estimation problem. In fact, it is the solution due to the uniqueness of optimal linear estimator
investigated in lecture 2.

3 H∞ Estimation

Now we address the matter of robustness using H∞ estimation theory. Consider the following:

‖s̃‖22
‖u‖22 ‖v‖

2
2

=

∥∥∥∥TK(uv
)∥∥∥∥2

2

‖u‖22 + ‖v‖22
(20)

Our goal is to take the supremum of this quantity over all signals u,v, and then the infemum over transfer
function K, in order to find the worst case energy gain. We care about this worst case energy gain, because
this quantity contains the noise in our system:

inf
K

sup
u:‖u‖2<∞,v:‖v‖2<∞

∥∥∥∥TK(uv
)∥∥∥∥2

2

‖u‖22 + ‖v‖22
(21)

Now we precisely define the H∞ norm:

Definition 2. The H∞ norm of any LTI system or matrix is defined as

‖T ‖H∞ , sup
x:‖x‖2<∞,x 6=0

‖T x‖2
‖x‖2

(22)

To investigate this definition we have the following theorem:

Theorem 3. H∞ norm of T

1. In the finite-horizon case

‖T ‖H∞ = σmax(T ) (23)

(the largest singular value of T )

4



2. In the infinite-horizon case

‖T ‖H∞ = sup
ω∈(−π,π)

σmax[T (ejω)] (24)

In general, H∞ estimation is hard, however the non-causal case is easy to obtain. Recall that previously
we said that the optimal K0 is given by LH∗(I +HH∗)−1. We also said that for any K,

TKT ∗K ≥ TK0
T ∗K0

(25)

Unlike for H2 estimation where we take the trace, here we take the largest eigenvalue of TKT ∗K , which directly
implies that

‖TK0
‖2H∞ = σmax(TK0

T ∗K0
) ≤ σmax(TKT ∗K) = ‖TK‖2H∞ (26)

So it means K0 is also optimal for H∞ estimation. However, one key observation for H∞ estimation is
that in general the solution is not unique. Indeed, if we denote

γs =
√
σmax(TK0T ∗K0

) =
√
σmax(L(I +H∗H)−1L∗), (27)

then K is H∞ optimal if and only if TKT ∗K ≤ γ2sI. As we show below, many filters K satisfy this relationship.

Theorem 4. [HSK99, Theorem 10.4.1] All H∞ estimators are given by

K = LH∗(I +HH∗)−1 + ∆S(I +HH∗)− 1
2 (28)

Where the matrix ∆ is given by

∆∆∗ = γ2sI − TK0T ∗K0
(29)

And the matrix S is any contractive operator. Precisely,

SS∗ ≤ I (30)

We must again emphasize that an estimator being H∞ optimal does in no way guarantee or imply that
it is a good estimator. The solution to H∞ estimation is not unique and in fact will include solutions with
high H2 error.
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