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Lecture 16: Gradient Descent and Least Mean Squares Algorithm

Lecturer: Jiantao Jiao Scribe: Aviral Pandey

In this note we will discuss the gradient descent (GD) algorithm and the Least-Mean-Squares (LMS) algo-
rithm, where we will interpret the LMS algorithm as a special instance of stochastic gradient descent (SGD).
In this lecture everything is real-valued.

Recall the setting of least squares below. We would like to find a coefficient w such that y; ~ 7w for
each 1 < i < m. It gives rise to the least squares formulation:

m
minZ(yi—m?w)Q < min|ly — Xw|3, (1)
w = w
where
Y1 - xf -
Y2 - CUQT -
y= X = :
Ym - £L’Zn -

Assuming X is full column rank (which requires m > n), we have the optimal solution given by
w, = (XTX)1xTy (2)

However, computing this optimal solution requires O(mn?) running time. The recursive least squares algo-
rithm computes it in an recursive fashion in m steps where each step requires complexity O(n?). We want
to address the following two questions in this lecture:

1. Suppose we are fine with O(n?) per-step computational complexity, but want to generalize RLS to
general problems. How can we do that?

2. Suppose O(n?) is too high complexity even for a single step and we can only do O(n). Is there anything
we can still do?

There are many answers to these two questions, and our answers in this lecture are GD and SGD,
respectively.

1 Gradient Descent

We would like to introduce the general framework of gradient descent in convex optimization. For consistency
the optimization variable will be denoted as x rather than w.
Say we want to minimize the function f(z) where z € R™.

1.1 Convex functions
We assume that the function f satisfies the following properties:
1. f is convex;
2. f has Lipschitz gradient:
IV (@) - V@) < Liiz -yl (3)



There are some interesting consequences of the Lipschitz gradient assumptions. In particular:

Lemma 1. [1, Theorem 2.1.5] Suppose (3) holds. Then,

F(w) < 5@) + (V7 @)y~ ) + 5 lla — ol (W
F) > F@) + (V(@)y —a) + 57 IV F (@) V)P 6
(Vi) = V)z —9) > TI95@) - VI (6)

The gradient descent algorithm starts with an initial point zg € R™ and for each k£ > 0 computes the
iterates

T+l = Tk — thf(.’L'k) (7)

For simplicity we assume that hy = h > 0. Denote by z, an arbitrary optimal point of our problem and let

The following theorem characterizes the performance of gradient descent.

Theorem 2. [1, Theorem 2.1.14] Let f be convex with Lipschitz gradient with constant L, and 0 < h < %
Then, the gradient method generates a sequence of points {xy} such that for any k > 0,

2(f(zo) — fo)llwo — .|

Fo) = = Sy =T+ R~ L) — o) )
Proof Let rp = ||xx — z«||. Then,
i1 = o — @ = hV f(ap) | (9)
= ri = 20(V f(xx), 2 — ) + 12|V f (@) |*. (10)
It follows from (6) that
(Vi) m = 2) 2 T IV AP (1)
since V f(z,) = 0. Hence, we have
i1 <7 = VRl + R ) P (12
=ri = M2/L = )|V f (). (13)
Since 0 < h < %, we have 77 < r2.
We also have
Flwrs) < Fle) 4 (F@r), e = 26) + 2 lwnss — ol (1)
= fler) + (Vf(xr), =hV f(ax)) + g” — hV f ()| (15)
= flan) = wl[VF (@), (16)
where w = h(1 — Lh/2) and we used (4). Denote Ay, = f(xx) — f.. We also have
Ay = f(zr) — f (17)
<AV f(xk), Tp — T (18)
<ol V£ ()l (19)



where the first inequality is due to the convexity of f and the second inequality follows from Cauchy—Schwarz.
Therefore,

A1 = f(@rt1) — fo (20)
< flak) = fo — |V f(2)]? (21)
2
< fa)  fo -k (22)
0
7o

where the first step follows from (16) and the second step follows from (19).
Dividing both sides by ApAg+1, we have

1 1 w Ak
> — 5 — 24
Apy1 — A 13 Apg 24
1 w
> — + —. 25
= + 2 (25)
Summing up the inequalities, we have
1 1 w
> —+=5k+1). 26
A1 — Ao 7"(2)( ) (26)
O

In order to choose the optimal step size, we need to maximize the function h(2 — Lh) w.r.t h, which is
given by h = 1. In this case, the final bound reads

2L(f(x0) = f)llwo — z.?

Tr) — flay) < . 27
fwe) = fla.) 2L||xo — .l[? + k(f (z0) — fx) 0
We can also upper bound f(zg) — f. using ||zo — z.||?. Indeed, we have
L 2 _ L 2

F@o) = fe = (VF(@a), 20 — 2:) + S llwo — 247 < Fllzo — 2] (28)

Since the RHS of (27) is increasing in f(zo) — f., we have the following bound when h = 7:

2L||zg — 4|2

o) — g < 20— 2l (29)

k+4
Let’s interpret this result in the case of quadratic function without assuming that X has full column rank.
flw) = ly — Xwl|l3,w e R™, X e R™*"
Vf(w) = —2X7(y - Xuw)
The gradient V f(w) is Lipschitz with constant L = 2\pax (X7 X). The previous general theorem tells us
that we need to guarantee that h < % = ﬁ We will now show through the special case of quadratic

functions that this requirement is tight.
Indeed, with the gradient descent formula

Wt = Wt—1 — th(wt,l), (30)



applied to this case, we have

Wy = We—1 + QhXT(y — th_l)
=wi_1 +2h(XTy — XT Xw;_1)
= w1 — 2hXT X (w1 — w,),

where w, satisfies X7y = X7 Xw,. In other words, w, is any solution to the normal equation. Let
v 2w, — w,, then

v = vy — 2W(XT X)v;y = (I — 2R XT X)v;_y, (31)
which implies that
vy = (I — 20X T X) wy. (32)

We would like ||v¢|l2 — 0 for any arbitrary vg.

If X has full column rank, then it is possible since we only need to guarantee that all the eigenvalues of
(I —2hXTX) € (—1,1). Tts eigenvalues are certainly strictly less than one (full column rank assumption),
and to ensure that it is strictly better than —1 we need

h< — (33)
Amax(XTX)'

However, if X does not have full column rank it is impossible to drive ||v;|| zero for arbitrary vg. Indeed,
if we pick vg such that Xvg = 0,v9 # 0, then v, = vg.

This example explains why Theorem 2 does not claim ||z — x| — 0 since it is in general impossible to
guarantee, and even poorly defined: the minimizer of a general convex function may not be a point. It may
be a set. The minimum is always attained if we consider convex functions in a compact set.

Theorem 2 guarantees that f(w;) — f(w,) converges to zero. When we specialize to this setting, we can
show that !

Flwe) = flws) = [|1X (we — wi) |, (34)
and X (w; — w,) = X satisfies
Xv; = X (I —2hXTX)twy, (35)
which annihilates any v satisfying Xwvy = 0.

As we will see, if we assume the function f is strongly convex, we can indeed guarantee that ||z5—z.| — O.

1.2 Strongly convex functions

In additional to the Lipschitz gradient assumption in (3), we assume that the function f is strongly convex:

I() = (@) + (Vf(@),y = @) + Glle — ] (36)
By symmetry we also have
F(@) = F)+ (VF)x—y) + Sl ] (37)

Summing up these two inequalities, we have

0> (Vf(x) = VI(y),y—a)+ pllz -yl (38)

1Hint: apply the normal equation.




which is the same as

(Vf(x) = Viy),z—y) > pllz -yl (39)

It turns out that for strongly convex functions with Lipschitz gradient, we can combine it with (6) to get a
weighted lower bound on (Vf(z) — Vf(y),z — y):

Lemma 3. [1, Theorem 2.1.12] Suppose [ is strongly convex (36) with Lipschitz gradient (3). Then for any
z,y € R™ we have

(Vf(x) =V f(y),z—y) >

plL 2 L 2
gl =l b IV ) - V) (40)

If f is second-order differentiable, then we can obtain another equivalent condition on the Hessian of f
summarizing the Lipschitz gradient assumptions and the strong convexity assumption:

pl X V?f(x) < LI (41)
We now show that the convergence rate of gradient descent for strongly convex functions.

Theorem 4. [1, Theorem 2.1.15] Suppose 0 < h < MJ%L and f is strongly convex with Lipschitz gradient.
Then the gradient descent algorithm satisfies

2hpL \ "
fow = 2P < (1= 22 o - P (12)
Ifhzlﬁ_%, then
k—1\"
o=l < (557) oo = (43
L (r—1\*
fa) - £ <5 (557) o=, (a4)

where k = ;% s the condition number.

Proof Let r; = ||zr — z«||. Then,

i1 = lox — 2 — hV f(zy)|° (45)
= ri = 2W(V f(xr), xx — z.) + W2V f (@)% (46)
Applying Lemma 3, we have
(Vf(@k), zp — 2i) = (Vf(2r) = V() mp — 20) (47)
1
> —z P+ —— 2,
> £ o — |+ IS @ (15)
Hence,
2hpuL 2h
7"1%+1 < m”xk -z - m”vf(xk)”Q + W2V f ()12 (49)
_ _ 2hpuL\ o 2 9
= (1- 220 ) zn (- 2 ) IV s (50)



For all h € (0,2/(p + L)], the term h (h - i) < 0. Hence we have

HtL
N () 1)
k * s ,LL—|—L 0 * .
The bound on f(zx) — f. follows from (28) and existing results on ||z — x.]|. O

For all h € (0,2/(p + L)], the best exponent (1 - QJT"LL) is achieved when h = MJ%L, and the best exponent

is
2ul 2 (p+L)*—4ul  (p—L)?

1_M+Lu—|—L_ (L+L2  (u+L)? (52)

Again, it turns out to be the best choice even for quadratic functions with known u, L as we show below.
Recall (32). Suppose we sort all of the eigenvalues of X7 X as

M2 > A3 > 2> ),

with corresponding unit norm eigenvectors {u;}, we have

n

vp = Z(l — 2h\) ui(ul vo)

i=1

The convergence of v; depends on the magnitude of (1 — 2h\;). We can formulate finding the optimal h as
the following problem:

arg mhin max{|l — 2h\;|} = arg m}}n max{|l — 2h\],|1 — 2R\, |} (53)
1

_ 54

AL+ A (54)

where in the first step we used the fact that |1 — hz| is a convex function of x and attains its maximum only
at extremes, and for the second step we solved this convex optimization problem for A and the solution is
the one achieving |1 — 2h\1| = |1 — 2hA,|. For this problem, p = 2X\,, L = 2A;, and this answer to h is
exactly #J%L

There exists another method to prove Theorem 4 that is a precise generalization of the argument we just
did for the quadratic function case. For the sake of completeness, we present it here.

[xr = hV f(zk) = 2|l = o = AV f(2k) = (20 = AV f ()| Vf(z.) =0

1
/ (I —hV2f(zs +t(zr — 4))) (2h — x*)dtH Mean value theorem
0

< sup |1 = AV f(@e + t(ap = )| lzn — 2|
< max{|l — hul,|1 — hL|} ||xr — =l Lipschitz gradient and strong convexity
which results in the recursion
Jons1 — oll” < max{| — hpf®,[1 = BL[2} g — ..

We can then choose 5
h = argm}jnmaxﬂl —hul?, |1 — hL|*} = S

for optimal rate of convergence.



2 Least Mean Squares (LMS)

Let’s go back to the least squares problem:

m

1 1
gy — Xwl|]2 = = i — 2l w)?
—lly — Xwllz mE (yi — z; w)

i=1
The LMS algorithm initiates at some point w; and at each step i > 1, it picks the function (y; — 1 w)?
and performs gradient descent on this function.
Oy: — af w)®
ow

= —22;(y; — x] w)

ow e

Wi41 = Wy —h

Generalizing the above, consider the optimization problem

1 m
min — Z fi(w)
voma
Then the generalized LMS update is:

W41 = Wt — htvft(wt)

The following theorem gives an regret interpretation of the updates above. In the next lecture, we will
present additional conditions to guarantee that this procedure indeed is solving the least squares problem in
expectation.

Theorem 5. Suppose |V fi(we)]| < G,Vt, using the above algorithm and picking h = \/—%, then

< o = w.|3 + G*

1 m
E;<vft(wt)awt_w*> 2\/ﬁ

Furthermore, if f; is convex, then

|wy — w3+ G?

2/m

% Z(ft(wt) — fe(wy)) <

Proof
wegr — wil|* = lwe — eV fr(we) — wi|3
= [lwy — wi||* + hZ ||V fe(we) |13 — 2he(V fr(wy), wy — ws)

2 2
—w,|]2 — —w, h
= (Vfi(wy), wy — w,) < [|we — wal]3 2hHwt+l wy|3 _~_5tGQ

t

Summing over t,

m

lwy —w.l | < o 1 1 G?
Z(Vft(wt)th—wﬁ_T+Z||wt—w*||2 o 2h, +7;ht

t=1 t=2

A

lwi — w3 G* m

wlp G
Z 2 Vm
= (s w3 + 62)



The final conclusion follows from dividing both sides by m. The last statement of the theorem follows from
the definition of convexity fi(w:) — fi(ws) < (V fi(we), wy — wy). O
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