
EECS 225A Statistical Signal Processing Lecture 10 & 11 - 02/20/2020

State Estimation for Hidden Markov Processes II
Lecturer: Jiantao Jiao Scribe: Jiantao Jiao

1 Recap of Hidden Markov Processes

Recall that a hidden Markov process has the following joint density

p(xn, yn) = p(xn)p(yn | xn) (1)

=

(
n∏
t=1

p(xt | xt−1)

)(
n∏
t=1

p(yt | xt)

)
(2)

We have the following conditional independence relations.

(Xt−1, Y t) —Xt — (Xn
t+1, Y

n
t+1) (a)

(Xt−1, Y t−1) —Xt — (Xn
t+1, Y

n
t) (b)

Xt−1 — (Xt, Y
t−1) — (Xn

t+1, Y
n
t) (c)

Xt−1 — (Xt, Y
n) —Xn

t+1 (d)

1.1 Causal inference with forward recursion

In causal inference with forward recursion, we defined

• βt(xt) = p(xt | yt−1) posterior on the state xt given past observations yt−1,

• αt(xt) = p(xt | yt) posterior on the state xt given all observations yt up to index t,

and the obtained the following algorithm:

Algorithm: Forward Recursion

Initialize: β1(x1) = p(x1) (prior probability on state)

For t ≥ 1:

1. αt(xt) = βt(xt)p(yt | xt)∑
xt
βt(xt)p(yt | xt)

(measurement update)

2. βt+1(xt+1) =
∑
xt
αt(xt)p(xt+1 | xt) (time update)

1.2 Non-causal Inference with Backward Recursion

The causal forward recursion algorithm makes sense in applications where we are only allowed to use the
state measurements up until the current index. In other applications, where causality is not a requirement
(such as in image processing), we can also incorporate future measurements. In other words, we can calculate

1

p(xt | yn), t ≤ n instead of just p(xt | yt). We write,

p(xt | yn) =
∑
xt+1

p(xt, xt+1 | yn)

=
∑
xt+1

p(xt+1 | yn)p(xt | xt+1, y
t, ynt+1)

=
∑
xt+1

p(xt+1 | yn)p(xt | xt+1, y
t)

=
∑
xt+1

p(xt+1 | yn)
p(xt | yt)p(xt+1 | xt, yt)

p(xt+1 | yt)

where in the third step we used the independence property Xt — (Xt+1, Y
t) —Xn

t+1 (property (c)) and the
last step follows from Bayes’ rule conditioned on yt. We can neglect the conditional dependence on yt in
the term p(xt+1 | xt, yt), because of the independence property Y t —Xt —Xt+1 (property (a)), thus, if we
make the additional definition

• γt(xt) = p(xt | yn) posterior on the state xt given all measurements yn,

then

γt(xt) =
∑
xt+1

γt+1(xt+1)
αt(xt)p(xt+1 | xt)

βt+1(xt+1)
. (3)

Here, γt(xt) depends only on γt+1(xt+1), the state transition probabilities p(xt+1 | xt), and the (known)
posteriors αt(xt), βt+1(xt+1). The backward recursion algorithm is presented below.

Algorithm: Backward Recursion

Initialize: γn(xn) = p(xn | yn) = αn(xn) (from forward recursion)

For t = n− 1 to 1:

1. γt(xt) =
∑
xt+1

γt+1(xt+1)αt(xt)p(xt+1 | xt)
βt+1(xt+1)

.

1.3 Reconstructions

Once we have the posteriors p(xt | yt) or p(xt | yn) from forward or backward recursion, we can make an
estimate x̂t of the underlying state in several ways, depending on the application.

• To minimize the probability of error (discrete state space):
x̂t = arg maxxt

p(xt | yt) (causal)
x̂t = arg maxxt

p(xt | yn) (non-causal)

• Conditional expectation, assuming X ⊆ R:
x̂t =

∑
xt
xtp(xt | yt) (causal)

x̂t =
∑
xt
xtp(xt | yn) (non-causal)

• The actual probabilities of each state:
x̂t = {p(xt | yt)}xt (causal)
x̂t = {p(xt | yn)}xt

(non-causal)

• Samples from the posteriors:
x̂t ∼ p(xt | yt) (causal)
x̂t ∼ p(xt | yn) (non-causal)

2

2 Most likely sequence of hidden states: the Viterbi Algorithm

The most likely sequence of hidden states x̂n is defined as

x̂n , arg max
xn

p(xn|yn).

The Viterbi algorithm computes x̂n efficiently using the idea of dynamic programming. It defines the
value function

Vt(xt) , max
xt−1

p(xt, yt) (4)

and iteratively computes it. Clearly,

V1(x1) = p(x1)p(y1|x1).

We have

p(xt, yt) = p(xt−1, yt−1)p(xt, yt|xt−1, yt−1)

= p(xt−1, yt−1)p(xt|xt−1, yt−1)p(yt|xt, xt−1, yt−1)

= p(xt−1, yt−1)p(xt|xt−1)p(yt|xt),

where in the last step we used conditional independence relation (a) to simplify p(xt|xt−1, yt−1) and relation
(b) to simplify p(yt|xt, xt−1, yt−1). Hence,

Vt(xt) = max
xt−1

p(xt, yt)

= max
xt−1

p(xt−1, yt−1)p(xt|xt−1)p(yt|xt)

= p(yt|xt) max
xt−1

p(xt−1, yt−1)p(xt|xt−1)

= p(yt|xt) max
xt−1

[p(xt|xt−1) max
xt−2

[p(xt−1, yt−1)]]

= p(yt|xt) max
xt−1

[p(xt|xt−1)Vt−1(xt−1)]

We just derived the iteration that computes Vt based on Vt−1, which efficiently produces Vt for all 1 ≤ t ≤ n.
Now we traceback the optimum achieving states. Clearly,

x̂n = arg max
xn

Vn(xn),

and it follows from the equation

Vt(xt) = p(yt|xt) max
xt−1

[p(xt|xt−1)Vt−1(xt−1)] (5)

that we can compute x̂t−1 based on x̂t using

x̂t−1 = arg max
xt−1

[p(x̂t|xt−1)Vt−1(xt−1)]. (6)

The pseudocode for the Viterbi algorithm is below.
A few remarks are in order. To avoid underflow in numerical computations, usually one computes the

logarithmic of all the probabilities and transform the product into sums. If the states xt take values in a
finite set with cardinality K, then the space complexity of the Viterbi algorithm is O(nK) since we need to
store n value functions and each one is a vector of dimension K. Its time complexity is O(nK2) since during
each iteration we need to sweep over all the entries of a specific value function, and to compute each entry
of a specific value function we need to compute the max operator, which again requires O(K) operations.

3

1: function Viterbi
2: V1(x1)← p(x1)p(y1|x1) . Initialization of value function
3: x̂n ← ∅ . Initialization of the MAP estimator
4: for t = 2, · · · , n do
5: Vt(xt) = p(yt|xt) maxxt−1 [p(xt|xt−1)Vt−1(xt−1)] . Forward computation of value function
6: end for
7: x̂n = arg maxxn

Vn(xn) . Maximum of overall log-likelihood
8: for t = n, · · · , 2 do
9: x̂t−1 = arg maxxt−1

[p(x̂t|xt−1)Vt−1(xt−1)] . Overall maximizing sequence
10: end for
11: end function

3 Defining functions F and G

Throughout this section, random variables X ∈ X , Y ∈ Y, and a distribution on X is viewed as a member of
P(X), and a conditional distribution pY |X is viewed as a function mapping X 7→ P(Y). Here P(X) denotes
the space of all probability distributions on X . We denote the set of functions mapping from set A to B as
BA.

Consider a random variable X with known statistics, i.e., known pX(x). Let this random variable pass
through a channel with known statistics pY |X(y | x) in Figure 1.

X Y

PY |X(y | x)

Channel
--

Figure 1: Pass random variable X through channel PY |X

The posterior of x given y is then given by the Bayes’ rule:

pX|Y (x | y) =
pX(x)pY |X(y | x)∑
x̃ pX(x̃)pY |X(y | x̃)

(7)

The marginal of Y is given by

pY (y) =
∑
x̃

pX,Y (x̃, y) =
∑
x̃

pX(x̃)pY |X(y | x̃) (8)

3.1 Function F

Definition 1. We define F as a function that takes tuple (pX , pY |X) as input to produce posterior pX|Y . In
other words,

F : P(X)× (P(Y))X 7→ (P(X))Y

We also introduce the notation F(pX , pY |X)(y) = pX|Y (·|y) ∈ P(X). The block diagram representation of
function F is shown in Figure 2.

3.2 Function G

Definition 2. We define G as a function that takes tuple (pX , pY |X) as input to output pY . In other words,

G : P(X)× (P(Y))X 7→ P(Y).

4

(pX , pY |X) pX|YF --

Figure 2: Block diagram representation for function F

The block diagram representation of function G is shown in Figure 3 .

(pX , pY |X) pYG --

Figure 3: Block diagram representation for function G

4 Interpretation of forward recursion

βt+1(xt+1) =
∑
xt

p(xt | yt)p(xt+1 | xt) (9)

αt(xt) =
βt(xt)p(yt | xt)∑
xt
βt(xt)p(yt | xt)

(10)

• βt(xt) = p(xt | yt−1) is the posterior of the present state xt given all the previous state observations,
yt−1. Equation (9) is called time update step.

• αt(xt) = p(xt | yt) posterior of the state xt given all causal observations yt. Equation (10) is called
measurement update step.

Now, we would interpret the measurement and time update steps of the forward recursion algorithm in
terms of the functions F and G.

4.1 Measurement update

Note from equation (10)

αt(xt) =
βt(xt)p(yt | xt)∑
xt
βt(xt)p(yt | xt)

We can construct a block diagram representation of equation (10) analogous to Figure 2 as shown in
Figure 4.

(βt, p(yt | xt), yt) αtF --

Figure 4: Interpretation of measurement update step in forward recursion

The above setting can now be viewed as if a random variable Xt with prior distribution βt is passed through
a known channel, i.e. known pYt|Xt

. We observe Yt = yt as the output from this channel. We can identify

5

these known quantities as of type same as inputs to function F. Also, we identify the output obtained by
operating function F on (βt, p(yt | xt), yt) as the posterior distribution of Xt given Yt = yt which is same as
the required quantity, αt(xt).

Thus, we can write
αt = F(βt, pYt|Xt

)(yt)

4.2 Time update

Note from equation (9), we have

βt+1(xt+1) =
∑
xt

p(xt | yt)p(xt+1 | xt)

=
∑
xt

αt(xt)p(xt+1 | xt)

We can now interpret the above equation for βt+1(xt+1) in terms of the setting of function G as described
in Figure (5).

(αt, pXt+1|Xt
) βt+1G --

Figure 5: Interpretation of time update step in forward recursion

We can view αt as the known prior distribution of a random variable which is applied to a known channel.
The time update step then calculates the probability distribution of the output observed. Hence, we now
write

βt+1 = G(αt, pXt+1|Xt
)

5 Interpretation of backward recursion

In the previous lecture, we described that when we have all the observations in hand, the causality is not a
requirement to estimate the underlying states. One such application is noisy image reconstruction. Backward
recursion algorithm provides computationally efficient way to calculate the posterior of the underlying state
at time t, xt given all measurements yn. In order to provide continuity, we revisit the notations and main
points of the algorithm.

6

p(xt | yn) =
∑
xt+1

p(xt+1 | yn)
p(xt | yt)p(xt+1 | xt, yt)

p(xt+1 | yt)
(11)

γt(xt) =
∑
xt+1

γt+1(xt+1)
αt(xt)p(xt+1 | xt)

βt+1(xt+1)
(12)

=

G(γt+1,F(αt, pXt+1|Xt
))︷ ︸︸ ︷∑

xt+1

γt+1(xt+1)

[
αt(xt)p(xt+1 | xt)∑
xt
αt(xt)p(xt+1 | xt)

]
︸ ︷︷ ︸

F(αt, pXt+1|Xt
)

(13)

Thus, we can write

γt = G(γt+1,F(αt, pXt+1|Xt
)) (14)

The equation (14) can be interpreted in two steps:

1. A random variable Xt with known prior distribution αt is passed through known channel, i.e. known
pXt+1|Xt

. The posterior of Xt given the channel output Xt+1 can be calculated using function F
interpretation as pXt|Xt+1

= F(αt, pXt+1|Xt
).

2. Now, we can view another random variable with known prior distribution γt+1 being passed through
channel with known statistics, F(αt, pXt+1|Xt

). The pmf of output at value xt, γt(xt) is then given by
G-interpretation, G(γt+1,F(αt, pXt+1|Xt

)).

Thus, we see that the complex looking equation (14) can in fact be viewed as transformation of distributions
αt and γt+1 into γt invoking the F and G function interpretations.

The interpretations given above using functions F and G are in general valid even if the states and obser-
vations are continuous but impractical in general(because we can not store the whole value of continuous
function). However, if all variables are Gaussian and operations are linear, we can apply this. We will see
that this property allows us to derive Kalman Filter as a special case of forward recursion in Gaussian state
space setting.

6 Kalman Filter

If random vectors X and Y are jointly Gaussian, then we write

(Xk×1,Y n×1) ∼ N (µ(k+n)×1,Σ(k+n)×(k+n))

where,

µ(k+n)×1 =

(
µX
µY

)
, Σ =

(
ΣX ΣXY

ΣY X ΣY

)
, ΣY X = ΣTXY

The matrix ΣXY is also know as cross covariance matrix of X and Y . Then, it follows from the Gauss–
Markov theorem in Lecture 3 that the conditional distribution of X conditioned on {Y = y} is given
as

X | {Y = y} ∼ N (µX + ΣXY Σ−1Y (y − µY),ΣX − ΣXY Σ−1Y ΣY X) (15)

7

The following interpretations may be useful. Denote the conditional expectation E[X|Y] as X̂(Y), then
we know

X̂(Y) = µX + ΣXY Σ−1Y (Y − µY).

The law of total variance gives us

ΣX = E[ΣX|Y] + ΣE[X|Y] (16)

= E[ΣX|Y] + ΣX̂ , (17)

where

ΣX|Y , E[(X − E[X|Y])(X − E[X|Y])T |Y],

which implies that

E[ΣX|Y] = E[(X − E[X|Y])(X − E[X|Y])T]

= E[(X − X̂(Y))(X − X̂(Y))T],

which is equal to the covariance matrix of the error vector X − X̂(Y).
The matrix ΣX̂ satisfies

ΣX̂ , E[(X̂ − E[X̂])(X̂ − E[X̂])T]

= E[(X̂ − µX)(X̂ − µX)T]

= ΣXY Σ−1Y ΣY X

as was shown in Lecture 2.
The interesting fact is that ΣX|Y , which in general is random matrix, is in fact equal to a deterministic

matrix almost surely:

ΣX|Y = ΣX − ΣXY Σ−1Y ΣY X .

6.1 Affine transformation of Gaussian random vector

Consider the affine transformation of X

Y = AX +N (18)

where we assumeX ∼ N (µX ,ΣX) andN ∼ N (0,ΣN) are independent. We also assume that the dimensions
of the involved matrices are consistent. Then following relations hold

ΣXY = ΣXA
T (19)

ΣY = AΣXA
T + ΣN (20)

µY = AµX (21)

From the above relations, we can write

E(X | Y) = µX + ΣXA
T (AΣXA

T + ΣN)−1(Y −AµX)

4
= F µ(µX ,ΣX ,A,ΣN ,Y) (22)

ΣX|Y = ΣX − ΣXA
T (AΣXA

T + ΣN)−1AΣX
4
= FΣ(ΣX ,A,ΣN) (23)

8

Here, E(X | Y) and ΣX|Y are conditional mean and covariance matrices of X given observed vector Y .
Now, Fµ and FΣ functions can be thought of as analogies of the generic function F defined previously.
Here, we essentially have the same setting: Gaussian random vector X is passed through a known channel,
fY |X . The functions Fµ and FΣ then completely describe the posterior fX|Y . This is because the posterior
distribution is also Gaussian and is completely characterised by the conditional mean and covariance matrix
as in equation (15).

Also, we have

Y ∼ N (µY ,ΣY)

µY = AµX
4
= Gµ(µX , A) (24)

ΣY = AΣXA
T + ΣN

4
= GΣ(ΣX , A,ΣN) (25)

Here, we can interpret the affine transformation in a setting where Gaussian random vector X with prior
distribution fX is passed through a known channel, fY |X . The functions Gµ and GΣ as described in above
equations then completely determine the distribution of the output vector Y . This follows since the output
is also Gaussian random vector, whose distribution is completely characterized by the mean and covariance
matrices given by functions Gµ and GΣ.

6.2 Kalman Filter

We now proceed to describe Kalman Filter. We assume the following setup of the state process and its
observation.

state process : Xt+1 = AtXt +Wt ∀t ≥ 1 (26)

observation process : Yt = HtXt +Nt ∀t ≥ 1 (27)

The dimensions of the vectors and matrices are given as below.

Xt ∈ Rk : state process

At ∈ Rk×k : state transition matrix

Wt ∈ Rk : process noise

Yt ∈ Rm : observed process

Ht ∈ Rm×k : output transition matrix

Nt ∈ Rm : measurement noise

Assumptions of the model

1. X1 ∼ N (0,Π1)

2. Wt ∼ N (0,ΣWt). Also, {Wt}t≥1 are independent.

3. Nt ∼ N (0,ΣNt). Also, {Nt}t≥1 are independent.

4. Process {Wt}t≥1, {Nt}t≥1, and X0 are mutually independent

9

5. Matrices At,Ht,ΣWt and ΣNt ,∀t ≥ 1, are deterministic and are known to the estimator.

Note

1. {Xt} is a Markov process

2. {Y t} is related to {Xt} through a memoryless channel. It is an HMP!

The (forward recursion) Kalman Filter finds the linear minimum mean square error estimate of Xt given Y t

by applying the forward recursion algorithm tailored to the jointly Gaussian random vectors. This approach
is justified as the process setup is an instance of the HMP with jointly Gaussian random vectors.

Due to Gaussianity, we can characterize the posterior probabilities using the first and second moments
only. Thus the quantities αt and βt are totally determined by (µXt|Y t ,ΣXt|Y t) and (µXt|Y t−1 ,ΣXt|Y t−1)
respectively. Just like the forward recursion for the general HMP, Kalman Filter consists of measurement
update and time update phase. We denote X̂i|j = µXi|Y j , Pi|j = ΣXi|Y j .

6.2.1 Measurement Update

In general HMP, we have:

αt = F(βt, pYt|Xt
)(Yt) (28)

In Kalman Filter, we express µXt|Y t and ΣXt|Y t using Fµ and FΣ.

µXt|Y t = Fµ(µXt|Y t−1 ,ΣXt|Y t−1 ,Ht,ΣNt ,Yt) (29)

ΣXt|Y t = FΣ(ΣXt|Y t−1 ,Ht,ΣNt) (30)

Writing explicitly, if we define

Kf,t = Pt|t−1H
T
t (HtPt|t−1H

T
t + ΣNt

)−1, (31)

we have

X̂t|t = X̂t|t−1 +Kf,t(Yt −HtX̂t|t−1) (32)

Pt|t = Pt|t−1 −Kf,tHtPt|t−1. (33)

The quantity Kf,t is called filtered Kalman gain.

6.2.2 Time Update

In general HMP, we have:

βt+1 = G(αt, pXt+1|Xt
) (34)

In Kalman Filter, we express µXt+1|Y t and ΣXt+1|Y t using Gµ and GΣ.

µXt+1|Y t = Gµ(µXt|Y t ,At+1) (35)

ΣXt+1|Y t = GΣ(ΣXt|Y t ,At+1,ΣWt) (36)

Writing explicitly, we have

X̂t+1|t = At+1X̂t|t (37)

Pt+1|t = At+1Pt|tA
T
t+1 + ΣWt . (38)

Kalman Filter is initialized by assigning

(µX1 ,ΣX1) = (0,Π1) (39)

10

