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Lecture 1: Reviewing DTFT and z-transform
Lecturer: Jiantao Jiao Scribe: Ayan Biswas

In this lecture we review some basic concepts of signal processing, including the Discrete-Time Fourier
Transform (DTFT) and z-transform.

1 Discrete-Time Fourier Transform (DTFT) [1, Chapter 3.4]

We define the Discrete-Time Fourier Transform (DTFT) of the signal as

X(ω) =

∞∑
n=−∞

x[n]e−jωn.

In the literature, sometimes we also write it as X(ejω) since it in fact only depends on ejω, and that
X(ω) is a periodic function with period 2π. We usually only specify X(ω) for ω ∈ (−π, π].

The inverse DTFT is given by

x[n] =
1

2π

∫ π

−π
X(ω)ejωndω

A natural question is, for what family of signals x[n] does the DTFT exist? The following three cases
are of particular significance:

• `1 class:
∞∑

k=−∞
|x[k]| <∞, i.e. series that converge absolutely. For this family, X(ω) is well defined for

every ω, the convergence is uniform over ω, and X(ω) is a continuous function of ω. 1

• `2 class:
∞∑

k=−∞
|x[k]|2 < ∞, i.e. square-summable sequences. This class is bigger than `1 and corre-

sponds to the Hilbert space theory of Fourier transform, and the corresponding DTFT “converges in
a mean-squared sense”:

lim
N→∞

∫ π

−π
|XN (ω)−X(ω)|2dω = 0,

where XN (ω) refers to the DTFT of x[k] truncated to between k = −N and N , which is a finite
sequence so XN (ω) is well defined. For `2 family, X(ω) is only defined “almost everywhere”. Let us
consider the important example of a (discrete) sinc function and its DTFT, where 0 < ω0 < π:

x[k] =
sin(ω0k)

πk
←→ X(ω) =

{
1 if |ω| < ω0

0 else

The sinc function belongs to the `2 class but not `1. Compare
∑
k

1
k with

∑
k

1
k2 for intuition about

convergence. We can see that its DTFT is not continuous in ω. In fact, XN (ω) does not converge for
ω = ω0.

1Absolute convergence implies uniform convergence of sequence of functions XN (ω) ,
∑N

n=−N x[n]e−jωn to X. Looking at
the DTFT as a function defined on a compact domain such as [−π, π], the uniform convergence and the continuity of XN for
each N implies that X is continuous.
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• Tempered distributions: it is bigger than `1 and `2, but requires the theory of generalized functions,
or distributions. We will not discuss the details here, but in signal processing literature we usually use
the Dirac delta function to deal with this case. For example, for constant signal: x[k] ≡ 1, which does
not belong to `1 or `2, we have the DTFT pair

x[k] = 1 ←→ X(ω) = 2πδ(ω)

Applying the IDTFT formula, x[k] =
∫ π
−π δ(ω)dω = 1, as desired, by the definition of the δ function.

The IDTFT formula holds for all signals in these three classes.

1.1 Properties of DTFT

The DTFT pair x[n]←→ X(ω) has the following properties:

1. time delay:

x[n− k]←→ e−jωkX(ω) (1)

2. time reversal:

x[−n]←→ X(−ω) (2)

3. conjugate:

x∗[n]←→ X∗(−ω) (3)

4. convolution in time:

x1[n] ∗ x2[n] ,
∞∑

l=−∞

x1[l]x2[n− l]←→ X1(ω)X2(ω) (4)

5. deterministic crosscorrelation:

c[n] =
∑
k∈Z

x[k]y∗[k − n]⇐⇒ C(ω) = X(ω)Y ∗(ω). (5)

2 z-transform [1, Chapter 3.5]

The z-transform generalizes the DTFT by replacing the complex number ejω with general complex number
z ∈ C.

2.1 Definition and Convergence

A discrete-time signal is denoted by

x[n] , n ∈ Z (6)

The z-transform of x[n] is defined as

X(z) ,
∞∑

n=−∞
x[n]z−n , z ∈ C (7)

The series in (7) is called a Laurent series. Complex analysis theory tells us that there exists a unique
inner radius r and outer radius R such that
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1. The Laurent series converges absolutely on the open annulus A , {z | r < |z| < R}. To say the series
converges, we mean that both the positive degree power series and the negative degree power series
absolutely converge, which is equivalent to

∞∑
n=−∞

|x[n]||z|−n <∞. (8)

Furthermore, this convergence will be uniform on compact sets. Finally, the convergence series defines
a holomorphic function f(z) on the open annulus.

2. Outside the annulus, the Laurent series diverges. That is, at each point of the exterior of A, the
positive degree power series or the negative degree power series diverges.

3. On the boundary of the annulus, one cannot make a general statement, except to say that there is at
least one point on the inner boundary and one point on the outer boundary such that f(z) cannot be
holomorphically continued to those points.

It is possible that r = 0 or R =∞. It is also not true that r < R in general. We can compute the radii
r,R as follows:

r = lim sup
n→∞

|x[n]|1/n (9)

1

R
= lim sup

n→∞
|x[−n]|1/n. (10)

In signal processing, we define the region of convergence (ROC) as the set {z | r < |z| < R} since we
only care about absolute convergence. By convention, the ROC concept is extended to |z| =∞ by including
|z| =∞ in the ROC when x[n] = 0 for all n < 0 and excluding it otherwise. Similarly, z = 0 is in the ROC
when x[n] = 0 for all n > 0 and not in the ROC otherwise.

2.2 ROC is needed to describe the signal

It is essential to specify the ROC along with the z-transform X(z) to uniquely describe a discrete-time
signal. This is because 2 different signals x1[n] and x2[n] can have the same z-transform X(z) and can only
be distinguished by their different regions of convergence, as highlighted in the following 2 examples.

Note: The Heaviside step function is defined by

u[n] =

{
1 n ≥ 0

0 otherwise
(11)

2.2.1 Example 1

Consider the signal

x1[n] = (
1

2
)nu[n] (12)
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The z-transform is given by

X1(z) =

∞∑
n=−∞

x1[n]z−n =

∞∑
n=0

(
1

2
)nz−n (13)

=

∞∑
n=0

(
1

2z
)n (14)

=
1

1− 1
2z

(15)

In (14) we use the relation
∑∞
n=0 a

n = 1
1−a which converges iff |a| < 1. Hence the ROC for the z-transform

is

| 1

2z
| < 1⇒ |z| > 1

2
(16)

2.2.2 Example 2

Consider the signal

x2[n] = −(
1

2
)nu[−n− 1] (17)

The z-transform is given by

X2(z) =

∞∑
n=−∞

x2[n]z−n = −
−1∑

n=−∞
(
1

2
)nz−n (18)

= −
∞∑
m=1

(2z)m (19)

= − 2z

1− 2z
=

1

1− 1
2z

(20)

The ROC for the z-transform is

|2z| < 1⇒ |z| < 1

2
(21)

From (15) and (20) we see that the z-transforms are equal for the 2 signals x1[n] and x2[n], but the ROCs
in (16) and (21) are different.

2.3 Causality

We say a discrete-time signal x[n] is causal if and only if x[n] = 0 for n < 0, hence we know x[n] is causal if
and only if the ROC includes ∞.

From the ROCs in the two examples above, we can see that only the first ROC (16) includes ∞, so x1[n]
is causal while x2[n] is noncausal, which is also obvious from the time domain representations.

2.4 BIBO stability

BIBO stands for bounded input, bounded output. By Holder’s inequality,∣∣∣∣∣
∞∑

n=−∞
x[n]y[n]

∣∣∣∣∣ ≤ sup
n
|y[n]|

∞∑
n=−∞

|x[n]| (22)
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Since the dual norm of `∞-norm is `1 norm, the left hand side in (22) is bounded for all bounded (`∞-
norm bounded) inputs y iff

∑∞
n=−∞ |x[n]| < ∞ ⇐⇒ ROC contains the unit circle |z| = 1 (from absolute

convergence criteria)
Once again, from the ROCs in the two preceding examples, we can see that only the first ROC (16)

includes |z| = 1, so x1[n] is BIBO stable while x2[n] is BIBO unstable, which can be inferred from the time
domain representations as well.

2.5 Properties of z-transform

The z-transform pair x[n]←→ X(z) has the following properties:

1. time delay:

x[n− k]←→ z−kX(z) (23)

2. time reversal:

x[−n]←→ X(z−1) (24)

3. conjugate:

x∗[n]←→ X∗(z∗) (25)

4. convolution in time:

x1[n] ∗ x2[n] ,
∞∑

l=−∞

x1[l]x2[n− l]←→ X1(z)X2(z) (26)

5. deterministic crosscorrelation:

c[n] =
∑
k∈Z

x[k]y∗[k − n]⇐⇒ C(z) = X(z)Y∗(z
−1), (27)

where Y∗(z) , Y ∗(z∗).
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