
Real-time Simulation of Physically Realistic Global Deformations

by

Yan Zhuang

B.A. (University of Arizona) 1992
M.A. (University of Southern California) 1995
M.S. (University of Southern California) 1995

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor John Canny, Chair
Professor Jonathan Shewchuk
Professor Panayiotis Papadopoulos

Fall 2000

The dissertation of Yan Zhuang is approved:

Chair Date

Date

Date

University of California at Berkeley

Fall 2000

Real-time Simulation of Physically Realistic Global Deformations

Copyright Fall 2000

by

Yan Zhuang

1

Abstract

Real-time Simulation of Physically Realistic Global Deformations

by

Yan Zhuang

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor John Canny, Chair

In this thesis, we model and simulate large global deformations of linear viscous

materials. Furthermore, we simulate the dynamic behaviors of such deformations

using �nite element methods (FEM).

Real-time simulation and animation of global deformation of 3D objects, using

the �nite element method, is diÆcult due to the following 3 fundamental problems:

(1) The linear elastic model is inappropriate for simulating large motions and large

deformations (unacceptable distortion will occur); (2) The time step for dynamic in-

tegration has to be drastically reduced to simulate collisions, if the traditional penalty

methods are applied; (3) The size of the problem (the number of elements in the FEM

mesh) is in n magnitude larger than that of a 2D problem.

In this thesis, we counter these 3 diÆculties as following: (1) using quadratic

2

strain instead of the popular linear strain to simulate arbitrarily large motions and

global deformations of a 3D object; (2) applying an eÆcient collision constraint to a

decoupled system, which makes an integration step for collision as cheap as a regular

dynamic integration step; (3) using a graded mesh instead of a uniform mesh, which

reduces the asymptotic complexity of a 3D problem to that of a 2D problem.

In order to preserve some of the subtle material properties such as viscous elastic-

ity, we also present an alternative real-time solution without compromising the mass

matrix in the FEM system. Instead of decoupling the system by diagonalizing the

mass and damping matrix, we preprocess the system using modi�ed nested dissection,

which improves the sparsity of the system.

In this thesis, we also present how we can apply the same FEM model to simulate

haptic feedback to a human operation in the virtual environment.

Professor John Canny
Dissertation Committee Chair

i

To Haixin,

my wife,

who is always there at the most diÆcult time,

and my parents,

Ming-de and Yuhua,

whose encouragement made my pursuit of a Ph.D. possible.

ii

Contents

List of Figures iv

List of Tables vi

1 Introduction 1

1.1 Related Works . 3
1.2 Thesis Outline . 6

2 Finite Element Formulation of Dynamic Global Deformations 8

2.1 Traction, Stress and Strain . 8
2.2 Linear Strain and Nonlinear Strain 14
2.3 Constitutive Equations and Linear Elasticity 18
2.4 Geometrically Nonlinear Finite Element Method 19

2.4.1 Elementwise FEM Formulation 21
2.4.2 What is Be and Re . 27
2.4.3 Element of General Shapes . 32
2.4.4 Global FEM Equations . 35

2.5 Implementation . 38
2.6 Special Cases . 38
2.7 Conclusion . 39

3 Real-time Simulation of Dynamic Global Deformations 40

3.1 Integration in the Time Dimension 42
3.1.1 Concentration of Mass . 45

3.2 EÆcient Collision Handling . 48
3.3 Graded Mesh . 53
3.4 Discussion . 57

4 Modi�ed Nested Dissection 59

4.1 Nested Dissection . 60

iii

4.1.1 Modi�ed Nested Dissection . 63
4.1.2 Running time . 67
4.1.3 Numerical Experiments . 68

4.2 Conclusion and Discussion . 71

5 Haptic Interaction with Global Deformations 73

5.1 Introduction . 74
5.2 Related Work . 76
5.3 Haptic Model Overview . 77
5.4 Haptic Display . 78

5.4.1 Collision with the Proxy . 79
5.4.2 Haptic Interpolation . 82

5.5 Conclusions and Discussions . 83

6 Conclusion and Future Works 85

Bibliography 89

iv

List of Figures

2.1 Resultant force and moment on a small oriented area. 9
2.2 Components of stress. 10
2.3 The left image shows a beam at its initial con�guration with a �xed

left end and a free right end. The middle image shows the distorted
deformation under gravity, using linear strain. The right image shows
the undistorted deformation, under the same gravitational force, using
quadratic strain (equation (2.9) and (2.10)). 14

2.4 The bottom of the object is �xed and its top is twisted. The top in the
left image is distorted (expanded bigger) because it is simulated using
linear elasticity. The right image shows that the same distortion does
not occur with nonlinear elasticity. 15

2.5 A 2-dimension example of �nite element mesh of a region. Each triangle
is a �nite element. 20

2.6 A cubic element of size 2, centered at the origin. 21
2.7 Isoparametric transformation. 34
2.8 1-dimensional example of element-wise weight functions. 36
2.9 1-dimensional example of Global weight functions. 36

3.1 A exible body collides with a rigid body. 50
3.2 A 2D example of graded mesh. 53
3.3 Triangular graded mesh. 56

4.1 (a) The dissector in the regular nested dissection algorithm is a layer
of nodes. (b) The simpli�ed version of the modi�ed nested dissection
algorithm uses a layers of elements (shaded), cut by a plane (or a line
in 2D), as the dissector. 61

4.2 (a) The block structure of sparse matrix A after the �rst dissection.
(b) The sparse matrix structure generated by regular nested dissection.
(c) The sparse matrix using "Simple-Modi�ed-Nested-Dissection". . . 62

v

4.3 (a) The connectivity graph corresponding to the the elements inter-
sected by the cutting plane. (b) The corresponding bipartite graph. . 66

4.4 The result for minimum degree ordering is plotted in dashed line,
Simple-Modi�ed-Nested-Dissection in solid line, and the standard nest-
ed dissection in dash-dot line. (a) Number of �lls. (b) Running time. 70

5.1 A virtual hand interacting with a soft cantilever beam. 75
5.2 A rigid proxy collides with a soft object. 80

vi

List of Tables

4.1 Number of �lls for di�erent ordering. 68
4.2 Time measured on HP9000/715. 69

vii

Acknowledgements

I would like to thank my Ph.D. advisor, Prof. John Canny, whose vision provides

unlimited motivation for this project. I would like to thank my committee members,

Prof. Papadopoulos and Prof. Shewchuk. Prof. Papadopoulos is an invaluable

resource for FEM due to his expertise on the subject. Prof. Shewchuk introduced me

into the �eld of meshing algorithms. I also thank Prof. Forsyth and Prof. Goldberg

for their discussions and feedbacks about this project. Without those people's help,

it would be impossible for me to conduct this research.

1

Chapter 1

Introduction

Physically realistic modeling and manipulation of deformable objects has been the

bottleneck of many applications, such as human tissue modeling, character animation,

surgical simulation, etc. Among the potential applications, a virtual surgical training

system is the most demanding for real-time performance because of the requirement

of real-time interaction with virtual human tissue.

So far real-time simulation and animation of deformation has only been achieved

in two special cases: 2D problems such as cloth simulation [4], and small or local

deformations for 3D objects [7, 24, 27, 18].

In this thesis, instead of focusing on one particular application, we address the

bottleneck problem of real-time simulation of physically realistic large global defor-

mations of 3D objects. By global deformation, we mean deformations, such as large

twisting or bending of an object (�gure (2.3) and (2.4)), which involve the entire

2

body, in contrast to poking and squeezing, which involve a relatively small region of

the deformable object. Large global deformations are essential for applications such

as surgical simulation, in which tissue will often be folded.

In contrast to most graphics research, we demand accuracy in addition to visually

satisfactory rendering. This makes �nite element method (FEM) a better choice

than the popular mass-spring model often used by the graphics community, because

the �nite element method is much more mathematically rigorous than a mass-spring

model. In particular we apply the geometrically nonlinear �nite element method

(FEM) to model large global deformations.

Finite element methods usually lead to a large system of di�erential equations. It

is diÆcult and challenging to solve such a system in real-time. In this thesis, di�erent

approaches are explored and discussed.

Collision is always a bottleneck in real-time dynamic simulation. The existing col-

lision handling methods lead to dramatic slow down of the simulation when collision

occurs. Simulating deformable object collisions using a penalty method [39] requires

tiny time steps to generate visually satisfactory animations. A general impulse colli-

sion [3] is considered more eÆcient and accurate but still requires more computational

power than collision-free dynamics. In this thesis, we present an extremely simple

and eÆcient collision time integration scheme, which makes the time integration of

collision dynamics as cheap as that of collision-free dynamics.

We observe that simulation of 3D deformation is at least one order of magnitude

3

more diÆcult than a similar 2D problem because the size of the problem (the number

of elements in its mesh) is one order of magnitude higher. By one order of magnitude,

we mean that the size of a 3D �nite element mesh is O(n) larger than that of a 2D

�nite element mesh, where n is the number of elements in each principle direction. In

order to counter this problem we propose a graded mesh that reduces the complexity

of the 3D problem by one order of magnitude asymptotically.

In this thesis, we also present how to apply the FEM model to provide haptic

feedback to the human operator.

1.1 Related Works

Our work of modeling and simulating a deformable object falls into the realm of

physically based modeling. Witkin et al [44] summarizes the methods and principles

of physically based modeling, which has emerged as an important new approach to

computer animation and computer graphics modeling.

In general, there are several di�erent approaches to modeling deformable objects:

mass-spring models, �nite element methods, �nite di�erence methods, and boundary

element methods. Gibson and Mirtich [14] gives a comprehensive review on mass-

spring models and �nite element methods.

The mass spring model has had good success in creating visually satisfactory

animations. Waters [42] uses a spring model to create a realistic 3D facial expression.

Provot et al [29] describes a 2D model for animating cloth, using double cross springs.

4

Promayon et al [28] presents a mass-spring model of 3D deformable objects and

develops some control techniques.

Despite the success in some animation applications, the mass spring models do not

model the underlying physics accurately, which makes them unsuitable for simulations

that require more accuracy. The structure of the mass spring is often application

dependent and hard to interpret. The animation results often vary dramatically with

di�erent spring structures. The distribution of the mass to nodes is somewhat (if not

completely) arbitrary. Despite its inaccuracy, it does not have visual distortion and

it is computationally cheap to integrate over time because the system is, by its very

nature, a set of independent algebraic equations, which requires no matrix inversions

to solve.

As an alternative, �nite element methods (FEM) model the continuum much

more accurately and their underlying mathematics are well studied and developed.

Finite element methods approximate the complex geometry and deformations by

piecewise simple functions, such as low order polynomials. Due to the accuracy and

mathematical rigorousness, FEM is a better choice for applications such as surgical

simulations.

Another similar method is the �nite di�erence method, which is less accurate and

simpler. Indeed a linear �nite di�erence method over a uniform mesh is just a spe-

cial case of FEM. Both �nite element methods and �nite di�erence methods provide

approximate solutions to di�erential equations. The di�erence lies where the approx-

5

imation occurs. Finite element methods approximate the solution using piecewise

smooth functions such as low order polynomials, while using the exact di�erential op-

erators. Finite di�erence methods approximate the di�erential operators themselves

by di�erence operators. Usually �nite di�erence methods require meshes over regular

grids.

Terzopoulos et al [39, 38, 40] applies both �nite di�erence and �nite element

methods in modeling elastically deformable objects. Celniker et al [24] applies FEM

to generate primitives that build continuous deformable shapes designed to support

a new free-form modeling paradigm. Pieper et al [27] applies FEM to computer-

aided plastic surgery. Chen [5] animates human muscle using a 20 node hexahedral

FEM mesh. Keeve et al [20] develops a static anatomy-based facial tissue model for

surgical simulation using the FEM. Most recently, Cotin et al [7] presents real-time

elastic deformation of soft tissues for surgery simulation, which only simulates static

deformations.

Boundary element methods (BEM) have the advantage of solving a smaller system

because they only deal with degrees of freedom on the surface of the model. However,

it is usually more expensive to solve such a system than an FEM system, because the

matrices derived in boundary element methods are dense, while the matrices derived

by FEM are sparse. The asymptotic bounds for solving a system derived from bound-

ary element method and that from FEM are both O(n3), where n is the number of

nodes in each principle direction. However it is, in practice, computationally cheaper

6

to solve an FEM system because of its sparsity. Besides the numerical disadvantages,

it is diÆcult to apply boundary element methods to model non-homogeneous material

and materials with internal state. This makes boundary element methods inappro-

priate for tissue modeling because tissues are not necessarily homogeneous materials.

James and Pai [18] model real-time quasi-static local deformations using the bound-

ary element method (BEM). The deformations are simulated with a locally linear

model. The real-time performance achieved by [18] requires the assumption that the

types of boundary condition changes at a very small region. The solution update

takes O(s3 + n2s) time, where n is the number of nodes in each principle direction

and s is the number of nodes on which the boundary condition changes types. In the

worst case, its complexity is O(n6).

Our work described in this thesis di�ers from the previous work by either one or

all of the following: (1) we simulate large global deformations instead of small local

deformations; (2) we simulate the dynamic behavior of soft objects rather than the

static deformation. Also instead of using a uniform mesh as all the related works

have done, we use a graded mesh to reduce the complexity of the model.

1.2 Thesis Outline

In chapter 2, we present the background work on theory of elasticity and �nite

element methods. In this chapter, the nonlinear system of di�erential equations that

model the dynamic behavior of global deformations of linear viscous material are

7

derived.

In chapter 3, we present the real-time numerical solution that solves the system

derived in chapter 2. In particular, in chapter 3.1.1, we discuss how to decouple

the system such that we can apply an explicit integration algorithm. Chapter 3.2 is

dedicated to real-time collision handling. In chapter 3.3, we introduce the concept of

graded meshes and discuss its favorable properties in terms of both complexity and

numerical accuracy. Part of the material in this chapter is published by Zhuang and

Canny in [46].

In chapter 4, we present the modi�ed nested dissection that solve the FEM system

in real-time without compromising the mass property as in chapter 3.1.1. We also

present comparisons of our algorithm versus several related algorithms, such as min-

imal degree algorithm and graph partition algorithm on the connectivity graph. The

comparison shows that the original geometry of �nite element mesh itself provides

better heuristics than the corresponding connectivity graph. This chapter is based

on published work by Zhuang and Canny [48].

Chapter 5 is relatively independent from the rest of the thesis. It applies the same

FEM model to simulate the haptic feedback when a human operator interacts with

a virtual deformable object in a virtual environment. The material in this chapter is

published by Zhuang and Canny in [47].

Finally, we summarize the thesis and discuss the future directions of our research

in chapter 6.

8

Chapter 2

Finite Element Formulation of

Dynamic Global Deformations

In this chapter, we discuss how we model the global deformation using geometrical-

ly nonlinear �nite element methods. First, we will briey introduce the fundamental

concepts in continuum mechanics. Then we will derive the �nite element formulation

of deformations using virtual work principle. This chapter also serves as a quick tu-

torial to �nite element method. For those who are interested in more details on this

subject, we would like to refer them to [10, 15, 30, 50].

2.1 Traction, Stress and Strain

In this section, we introduces the fundamental concepts for the description and

measurement of the state of deformations.

9

∆ M
n

n

F∆ n

∆ A n

Figure 2.1: Resultant force and moment on a small oriented area.

Given a deformable body (Figure 2.1), consider a small area 4An on the surface

of or within the body, which has an orientation speci�ed by unit normal vector n̂.

Let 4Fn and 4Mn be the resultant force vector and moment vector, respectively,

exerted on oriented area 4An. We seek the intensity of the resultants on the oriented

area element 4An by taking the limit as following:

lim
4An!0

4Fn

4An

=
dFn

dAn

= Tn (2.1)

lim
4An!0

4Mn

4An

=
dMn

dAn

= Cn (2.2)

10

x1

x2

x3

σ11

σ12

σ13

σ31
σ32

σ33

σ21

σ22

σ23
T1

T2

T3

Figure 2.2: Components of stress.

Tn is the stress vector or traction, Cn is the couple-stress vector. The elementary

theory of elasticity proceeds on the assumption that Cn = 0, while the traction

Tn represents the stress intensity at the point for the particular area element of

orientation speci�ed by unit normal vector n̂. A complete description of the stress

at the point requires the traction for all directions. Fortunately this problem can be

solved by traction in principle directions.

Given a point (x1; x2; x3)
1 in the deformable body, consider an in�nitesimal cube

centered at this point. Figure 2.2 shows the 3 tractions Ti, i = 1; 2; 3, on the faces

with surface normal vectors along the principle directions. Each such traction Ti has

components along the principle axis. The 9 stress components (each a scale value)

1In this thesis, we will use (x; y; z) and (x1; x2; x3) interchangably.

11

shown in �gure 2.2 form a second order tensor P as follows:

P =

0
BBBBBBBB@

�11 �12 �13

�21 �22 �23

�31 �32 �33

1
CCCCCCCCA

(2.3)

This tensor P uniquely de�nes the state of stress at point (x1; x2; x3). Given an

area element of surface normal n̂, the corresponding traction is given by P T n̂.

Stress tensor P gives a complete description of the internal force intensity at a

given point. Similarly, a strain tensor at a point gives a complete description of the

state of deformation at that point. The strain tensor is also second order tensor as

following:

0
BBBBBBBB@

�11 �12 �13

�21 �22 �23

�31 �32 �33

1
CCCCCCCCA

(2.4)

Using the equilibrium condition of zero moment at point (x1; x2; x3) and shrinking

the cube to zero-volume, one can easily derive the following:

�ij = �ji (2.5)

It requires more complicated mathematical treatment to establish the symmetry

of strain tensor ([10]). Here we simply state this fact without the mathematical

derivation:

12

�ij = �ji (2.6)

Due to the symmetry, there are only 6 independent variables in the stress tensor

and the strain tensor. In the rest of this thesis, we will simply use the vector rep-

resentation for stress and strain, instead of their tensor representation. The vector

representation of stress is:

� =

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

�x

�y

�z

�yz

�zx

�xy

9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

(2.7)

where �x = �11, �y = �22, �z = �33, �yz = �23 = �32, �zx = �31 = �13, and

�xy = �12 = �21. The �rst 3 components are called normal stresses, the other 3 are

called shear stresses.

The vector representation of strain is:

13

� =

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

�x

�y

�z

yz

zx

xy

9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

(2.8)

Given the point-wise displacement (u; v; w) of the deformable body, the strain is

given as following:

�x =
@u

@x
+

1

2

2
4 @u

@x

!2

+

@v

@x

!2

+

@w

@x

!2
3
5 (2.9)

xy =
@u

@y
+

@v

@x
+

"
@u

@x

@u

@y
+

@v

@x

@v

@y
+

@w

@x

@w

@y

#
(2.10)

The other 4 terms of the strain vector is de�ned similarly. If the motion of the

deformable body is small, the second order term can be neglected. This leads to the

linear strain approximation for small motion (deformation), which have the following

forms:

�x =
@u

@x
(2.11)

xy =
@u

@y
+

@v

@x
(2.12)

14

A more mathematically complete development of traction, stress and strain can

be found in [10].

2.2 Linear Strain and Nonlinear Strain

Figure 2.3: The left image shows a beam at its initial con�guration with a �xed left
end and a free right end. The middle image shows the distorted deformation under
gravity, using linear strain. The right image shows the undistorted deformation, under
the same gravitational force, using quadratic strain (equation (2.9) and (2.10)).

In this thesis, we focus on large global deformations. By global deformations, we

mean deformations that are large and involve the entire body, such as high amplitude

bending and twisting (�gure 2.3 and 2.4). These types of deformations are essential to

surgical simulations. For example, in a surgical simulation, it is essential to simulate

how tissue folds. Although we are not building a surgical simulator, this thesis is

meant to establish the fundamental framework for modeling tissues. Therefore we

would like to choose a modeling paradigm that can handle large global deformations.

To our best knowledge the published research ([27, 5, 20, 7]) assume small de-

formations in their virtual environment. The most simulated deformations are those

15

Figure 2.4: The bottom of the object is �xed and its top is twisted. The top in the
left image is distorted (expanded bigger) because it is simulated using linear elastic-
ity. The right image shows that the same distortion does not occur with nonlinear
elasticity.

caused by squeezing and poking at a relatively small surface region. The small defor-

mation assumption leads to the often used linear elasticity model, which is based on

the linear strain approximation (2.11) and (2.12).

For large global deformations, the linear strain is not appropriate because it does

not model large motions exactly. The linear strain is derived from the assumption

of small motion. Recall that the exact strain de�ned in (2.9) and (2.10) are derived

without the assumption of small motions. Therefore it mathematically applies to any

large motion and deformation.

To further illustrate the di�erence between the exact strain and the linear strain,

let us examine an arti�cial motion of a deformable object
 in details. For the

sake of illustration, assume that we subject the object
 to an arbitrary rotation

R. Furthermore, we assume that the object
 is originally undeformed and remains

16

undeformed after this rotation. Any reasonable model should be able to handle such

a \rigid" body rotation exactly. In terms of strain, an appropriate model should be

able to give zero strain in such a rotation, because there is no deformation after a

pure rotation.

After the rotation of
, every point in the
 has a displacement. Let (x; y; z) be

an arbitrary point in the deformable body
. The pointwise displacement of
 is:

0
BBBBBBBB@

u

v

w

1
CCCCCCCCA
= R

0
BBBBBBBB@

x

y

z

1
CCCCCCCCA
�

0
BBBBBBBB@

x

y

z

1
CCCCCCCCA
=

0
BBBBBBBB@

r11 � 1 r12 r13

r21 r22 � 1 r23

r31 r32 r33 � 1

1
CCCCCCCCA

0
BBBBBBBB@

x

y

z

1
CCCCCCCCA

(2.13)

If we apply the linear strain (2.11) to this displacement �eld of
, we have

�x = r11 � 1 6= 0

xy = r12 + r12 6= 0

(2.14)

However this is apparently problematic. The undeformed body is still undeformed

after a rigid body rotation, therefore the strain should be zero regardless how large the

rotation is. If we apply such a linear strain to model large deformations, unacceptable

distortions will occur. (�gure 2.3 and 2.4). This arti�cial non-zero strain introduces

arti�cial non-zero stress. The deformable body has to deform distortionally to counter

balance such arti�cial stress.

Now let us exam the quadratic exact strain given by (2.9) and (2.10). If we apply

17

(2.9) and (2.10), we have

�x = (r11 � 1) + 1
2
[(r11 � 1)2 + r221 + r231]

= r11 � 1 + 1
2
[r211 � 2r11 + 1 + r221 + r231]

= r11 � 1 + 1
2
[2� 2r11]

= 0

xy = r12 + r21 + [(r11 � 1)r12 + r21(r22 � 1) + r31r32]

= r11r12 + r21r22 + r31r32

= 0 (Orthonormality)

(2.15)

Other 4 terms of the exact strain can be veri�ed similarly. This shows that the

exact strain can handle arbitrarily large deformations and motions of deformable

body. Because large motions and deformations are essential in character animation

and surgical simulation, we choose to model global deformations using the exact strain

instead of linear strain. To emphasize the nonlinear nature of the exact strain, we

refer to it as the quadratic strain in the rest of the thesis.

The quadratic strain models arbitrarily large rotations exactly. Furthermore, since

no small motion assumption is needed in applying the quadratic strain, we can use a

�xed global frame for the entire simulation. In this thesis, all equations are derived

using a �xed global coordinate system.

18

2.3 Constitutive Equations and Linear Elasticity

The properties of materials are speci�ed by constitutive equations. In particular

a stress-strain relationship describes the mechanical properties of a material and is

therefore a constitutive equation.

In this thesis, we simply model the deformable objects as damped linear elastic

material. Namely there is a linear relationship between the stress vector and the

strain vector as following:

� = �(�� �0) + �0 (2.16)

where � is an elasticity matrix containing the appropriate material properties, and

�0 and �0 are the initial strain and stress, respectively. Usually we assume both

initial strain and stress are zero. Therefore we have the following linear strain-stress

relationship:

� = �� (2.17)

If the material is isotropic, the elasticity matrix� only has two degrees of freedom:

Young's modulus E and Poisson's ratio �.

The elasticity matrix � for isotropic elastic material has the following form:

19

� =

0
BBBBBBBBBBBBBBBBBBBBBBB@

�+ 2� � � 0 0 0

� �+ 2� � 0 0 0

� � �+ 2� 0 0 0

0 0 0 � 0 0

0 0 0 0 � 0

0 0 0 0 0 �

1
CCCCCCCCCCCCCCCCCCCCCCCA

(2.18)

where � and � are called lam�e's constants, and

� = E�
(1+�)(1�2�)

� = E
2(1+2�)

(2.19)

2.4 Geometrically Nonlinear Finite Element Method

The theory of elasticity is a fundamental discipline in studying continuum ma-

terial. It consists of a consistent set of di�erential equations that uniquely describe

the state of stress, strain and displacement of each point within an elastic deformable

body. It consists of equilibrium equations relating the stresses; kinematics equations

relating the strains and displacements, constitutive equations relating the stresses

and strains; and boundary conditions relating to the physical domain. The theory

was �rst developed by Louis-Marie-Henri Navier, Dimon-Denis Poisson and George

Green in the �rst half of the 19th century [43].

Synthesizing those equations allows us to establish a relationship between the

20

deformation of the object and the exerted forces. However an analytic expression of

such relationship is impossible, except for a small number of simple problems. Finite

element methods (FEM) are one way to solve such a set of di�erential equations.

From now on, we will discuss elasticity within the context of �nite element methods.

When the geometry of the deformable object is complicated, it is impossible to

obtain an analytic solution of an elastic deformation. FEM solves this problem by

subdividing the object into small sub-domains with simple shapes (tetrahedra, hex-

ahedra, etc.), called �nite elements (Figure 2.5). The sub-division (mesh) does not

only approximate the original geometry, but also leads to a discrete representation of

the deformation.

Figure 2.5: A 2-dimension example of �nite element mesh of a region. Each triangle
is a �nite element.

In particular, we apply a displacement based �nite element method to simulate

such deformation. Namely displacements at vertices of the mesh, called nodes, will

21

be calculated. The values at other points within the element are interpolated by a

weighted sum of all the nodal displacements within the element. The global equations

(the relationship between all the nodal values) are obtained by assembling elementwise

equations by imposing inter-element continuity of the solution and balancing of inter-

element forces.

We show the �nite element formulation of a linear viscous material. In particular,

we use linear hexahedral element and quadratic strain. Note that the procedure can

be easily generalized to elements of di�erent shapes, such as tetrahedral elements,

and higher order elements.

2.4.1 Elementwise FEM Formulation

x

y

z

2

3

1

0

4

5 6

7

(1,1,−1)

(−1,1,1)

(1,−1,1)

Figure 2.6: A cubic element of size 2, centered at the origin.

For the simplicity of the mathematical presentation, we further assume that the

22

hexahedral element in consideration is a cube centered at the origin and that each

side of the cube has a length of 2 (Figure 2.6). Later we will show how to generalize

this to hexahedral elements of general sizes and shapes.

To emphasize the fact that our discussion is now localized to a particular element,

we use a super-scripted \e" to all the quantities within the given element. For exam-

ple, we refer to the the entire body as
, while referring to a particular element as

e.

Let ui
e, i = 0; : : : ; 7 be the nodal displacements of the corresponding nodes in

�gure 2.6. The displacement of any point (x; y; z) within this element is approximated

by weighted sum of the nodal displacements as following:

u(x; y; z) =
7X

i=0

�ei (x; y; z)u
e
i (2.20)

where �ei 's are the interpolation functions (weight function). Particularly in our case,

�ei 's are tri-linear functions as following:

�e0(x; y; z) =
1

8
(1� x)(1� y)(1� z) (2.21)

The other 7 weight functions are de�ned similarly with the same key property: �i

evaluates to 1 at node i and evaluates to 0 at other nodes.

Let I3 be the 3-dimensional identity matrix. The point-wise displacement within

the element
e (2.20) can be written in the following matrix form:

23

u(x; y; z) = �eue (2.22)

where

�e = (�e0I3; �
e
1I3; : : : ; �

e
7I3)3�24 (2.23)

and

ue =

0
BBBBBBBBBBBBBBBBBBBBBBB@

ue0

ue1

:

:

:

ue7

1
CCCCCCCCCCCCCCCCCCCCCCCA
24�1

(2.24)

Next, we apply virtual work to derive discrete system of equations. Let be be

the distributed body force acting on the element, per unit volume. Note that be is

a 3 � 1 vector. Let qe be the equivalent nodal forces, which are equivalent to the

boundary stresses and distributed loads on the element. Particularly in our case, qe

is a 24�1 vector, where the �rst 3 components are corresponding to node 0, the next

3 components are corresponding to node 1, and so on.

Since we are interested in the dynamic behavior of elastic body, we have to consider

the inertia force and damping force which opposes the motion. The static equivalent

of the inertia force per unit volume is:

24

���u (2.25)

The static equivalent of a simple linear viscous damping force per unit volume is:

�� _u (2.26)

Therefore the equivalent static distributed force acting on a unit volume within

the element is as following:

be � ��u� � _u (2.27)

To make the nodal forces equivalent to the actually boundary stresses and dis-

tributed loads, we impose an arbitrary virtual displacement to the element and equate

the external and internal work done by the various forces and the stresses. This ap-

proach is called virtual energy principle.

Given Æue as the virtual displacement at the nodes, the displacement within the

element is

Æu = �eÆue (2.28)

The strain is as following ([50]):

Æ� = BeÆue (2.29)

25

The virtual work done by the nodal forces is equal to the sum of the products of

the individual force components and corresponding virtual nodal displacement. This

can be written in matrix form as following:

ÆueTqe (2.30)

The virtual internal work per unit volume done by the stresses, distributed body

force, inertia force and damping force is

Æ�T� � ÆuT (be � ��u� � _u) (2.31)

By (2.28) and (2.29), we have the internal virtual work per unit volume as:

ÆueT [Be� ��eT (be � ��u� � _u)] (2.32)

Virtual works on the element can be obtained by integrating (2.30) and (2.32)

over the volume of the entire element, denoted by
e. According to the principles of

energy, the virtual internal work have to be equal to the virtual external work (virtual

work done by the equivalent nodal forces). Therefore we have the following:

ÆueTqe = ÆueT
Z

e
[Be� ��eT (be � ��u� � _u)]d
e (2.33)

Since ÆueT is arbitrary virtual displacement, it can be canceled out. Therefore we

have the following equality:

26

qe =
Z

e
[Be� ��eT (be � ��u� � _u)]d
e (2.34)

By (2.22), we have

_u = �e _ue

�u = �e�ue
(2.35)

Applying (2.35) to (2.34), we have

qe =
Z

e
Be�d
e �

Z

e
�eTbed
e +

Z

e
�eT��e�ued
e +

Z

e
�eT��e _ued
e (2.36)

Finally we obtain the following matrix di�erential equation for the �nite element

in �gure 2.6:

Me�ue +De _ue +Re(ue) = Fe + qe (2.37)

where

Me =
Z

e
�eT��ed
e (2.38)

De =
Z

e
�eT��ed
e (2.39)

Fe =
Z

e
�eTbed
e (2.40)

27

and

Re(ue) =
Z

e
BeT�d
e (2.41)

In equation (2.37), ue is the 24-dimensional nodal displacement vector of the

element; _ue and �ue, the respective nodal velocity and nodal acceleration vectors; Fe,

the equivalent 24-dimensional nodal body force vector; qe, the equivalent nodal force

due to stress and load on the boundary of the element; Me, the 24� 24 element mass

matrix; De, the 24 � 24 element damping matrix; and Re(ue), the 24-dimensional

equivalent nodal internal force vectors due to deformation.

We have not given the mathematical expression of qe. The reason is that due to

element continuity, this term will eventually "disappear", except on the boundary of

the body, when we have the global equations for the entire deformable body. On the

surface of element interface in the interior of the body, this term have the same value

and opposite directions between any two adjacent elements, which will be canceled

in the global equations. Therefore we will not give the expression of this term until

we derive the global equations in chapter 2.4.4.

2.4.2 What is Be and Re

The term Re(ue) is more complicated than others in equation (2.37). We will

derive it in this section.

We derive it using the following de�nition (2.29) ([50]):

28

d� = Bedue (2.42)

A simple case of this is when we use the linear strain approximation (2.11) and

(2.12). We can write the vector representation of a linear strain in the following

matrix form:

� =

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

�x

�y

�z

yz

zx

xy

9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

=

0
BBBBBBBBBBBBBBBBBBBBBBB@

@
@x

0 0

0 @
@y

0

0 0 @
@z

0 @
@z

@
@y

@
@z

0 @
@x

@
@y

@
@x

0

1
CCCCCCCCCCCCCCCCCCCCCCCA

0
BBBBBBBB@

u

v

w

1
CCCCCCCCA
= Su (2.43)

where S is the linear di�erential operator in matrix form and u is displacement vector

at any given point (x; y; z).

By (2.42), we have

d� = dSu = Sdu (2.44)

By equation (2.22), we have

d� = S�edue (2.45)

Therefore we have

29

Be = S�e (2.46)

Let us rename this Be to Be
0 to reect the fact that it is a special case of B

e with

linear strain. If we have a linear stress-strain relationship as spesi�ed by (2.17), we

get

� = �� = �Su = �S�eue = �Be
0u

e (2.47)

Therefore, given a linear strain, the term Re(ue) can be simpli�ed to a linear

function of ue as following:

Re(ue) =
R

e B

eT�d
e

=
R

e B

eT
0 �B

e
0u

ed
e

= Keue

(2.48)

where Be
0 is given by (2.46) and

Ke =
Z

e
BeT

0 �B
e
0d

e (2.49)

This will simplify the equality (2.37) to a linear system of di�erential equations:

Me�ue +D _ue +Keue = Fe + qe (2.50)

As discussed earlier, we are only interested in simulating large global deformations

that can not be approximated by linear strains. Instead we have to use the quadratic

strains de�ned in (2.9) and (2.10).

30

First let us de�ne 3 new vectors as following:

�x =

0
BBBBBBBB@

@u
@x

@v
@x

@w
@x

1
CCCCCCCCA

(2.51)

where �y and �z are de�ned similarly.

By the quadratic strain de�nitions (2.9) and (2.10), and notation de�ned in (2.51),

we can write the quadratic strain in the following matrix form:

� =

0
BBBBBBBBBBBBBBBBBBBBBBB@

@
@x

0 0

0 @
@y

0

0 0 @
@z

0 @
@z

@
@y

@
@z

0 @
@x

@
@y

@
@x

0

1
CCCCCCCCCCCCCCCCCCCCCCCA

0
BBBBBBBB@

u

v

w

1
CCCCCCCCA
+ 1

2

0
BBBBBBBBBBBBBBBBBBBBBBB@

�Tx 0 0

0 �Ty 0

0 0 �Tz

0 �Tz �Ty

�Tz 0 �Tx

�Ty �Tx 0

1
CCCCCCCCCCCCCCCCCCCCCCCA
6�9

0
BBBBBBBB@

�x

�y

�z

1
CCCCCCCCA
9�1

= Su + 1
2
A�

(2.52)

where A is nonlinear.

By (2.42) and (2.46), we have

d� = Be
0du

e +
1

2
d(A�) = Be

0du
e +

1

2
dA�+

1

2
Ad� (2.53)

It is easy to verify the following property of matrix A and �:

31

dA� = Ad� (2.54)

Therefore, we have

d� = Be
0du

e +Ad� (2.55)

The matrix � can be written as:

� =

0
BBBBBBBB@

@
@x
I3

@
@y
I3

@
@z
I3

1
CCCCCCCCA
9�3

u = Tu (2.56)

where I3 is the 3-dimensional identity matrix.

Apply (2.22) to (2.56), we have

� = T�eue = Geue (2.57)

where

Ge = T�e (2.58)

By (2.55) and (2.58), we have

Be = Be
0 +AGe (2.59)

Therefore we have the following expression for Re(ue):

32

Re(ue) =
R

e B

eT�d
e

=
R

e B

eT��d
e

=
R

e B

eT�(Be
0u

e + 1
2
AGeue)d
e

= Ke(ue)ue

(2.60)

where

Ke(ue) =
Z

e
BeT�(Be

0 +
1

2
AGe)d
e = Ke +

1

2

Z

e
BeTAGed
e (2.61)

Equality (2.61) shows that the sti�ness matrix is now displacement-dependent,

because the matrix A is displacement dependent. The local sti�ness matrix Ke(ue)

has two parts: the �rst part Ke is the same as the constant sti�ness matrix derived

from linear strain; the second term depends on the nodal displacement ue. Therefore

Re(ue) is a nonlinear function of ue. This makes the (2.37) a nonlinear system of

di�erential equations of nodal displacement ue.

2.4.3 Element of General Shapes

In section 2.4.1, we have made a very strong assumption about the shape, size

and position of the hexahedral element. In general, the element in the �nite element

mesh will have di�erent sizes, di�erent shapes and will be at di�erent positions in

the coordinate frame. Each "facet" of the hexahedral element is not even necessarily

co-planar.

However we would like to point out that none of the derivations in chapter 2.4.1

33

requires a normalized element as in �gure 2.6. The normalized element only buys us

two simpli�cation: the weight function has a simple form as de�ned in (2.21); and

the volume has a regular shape (a cube) therefore the volume integration is relatively

easier. Besides these two mathematical simpli�cations, the rest of the derivation

applies to elements of any size, any shape with any weight functions. Namely, given

weight functions �ei (x; y; z), and an element
e of arbitrary shape and size, all the

derived equalities (2.37) to (2.41) still hold.

Theoretically we are done with the generalization of elementwise �nite element

equations to arbitrary element, including element of di�erent types such as tetrahedra

and element of di�erent number of nodes. However there is a practical diÆculty in

terms of evaluating the volume integrals in equalities (2.37) to (2.41). It is diÆcult

to evaluate the volume integral over an arbitrary volume. Furthermore, we may not

even have the explicit form of the weight functions �ei 's if the element does not have

a nice shape.

This problem can be easily solved by mapping a general hexahedral element to

the normalized element in �gure 2.6. We can then evaluate the volume integral over

the normalized element as shown in section 2.4.1. Finally we can map the result back

to the physical element in consideration using a Jacobian.

To simplify the presentation, we change the coordinate frame of the normalized

element in �gure 2.6 to (�; �;) and refer to it as the natural coordinate frame and refer

to the (x; y; z) frame as the physical coordinate frame (Figure 2.7). We refer to the

34

x

y

z

2

3

1

0

4

5 6

7

(1,1,−1)

(−1,1,1)

(1,−1,1)

ξ

γ

η

1

0

2

3

4

5 6

7

isoparametric

physical

Figure 2.7: Isoparametric transformation.

element in the physical coordinate frame as the physical element and the normalized

element in natural coordinate frame (as shown in �gure 2.6) as the isoparametric

element. The mapping between a physical element and the isoparametric element is

as following:

ue =
7X

i=0

�ei (�; �;)u
e
i (2.62)

where �ei 's are the same weight function as de�ned in (2.21).

It is easy to verify that (2.62) gives a one-to-one mapping between an physical

hexahedral element and the isoparametric element. Therefore we can evaluate the

volume integrals in (2.37) to (2.41) by transforming them into the natural coordinate

frame using the Jacobians. For example, the element mass matrix can be evaluated

as:

35

Me =
R

e �

eT��ed
e

=
1R
�1

1R
�1

1R
�1
�(�; �;)T��(�; �;)d�d�d

(2.63)

where � is de�ned in the natural coordinate frame.

Other volume integrals for general hexahedral element can be evaluated similarly.

For tetrahedral �nite element mesh, there is a di�erent isoparametric element to

use in the natural coordinate frame. For details, users are referred to [30].

2.4.4 Global FEM Equations

We can indeed consider the entire body
 as a "gigantic" element with n nodes.

We can also assume that weight functions �i's are de�ned over the entire body with

local support (�gure 2.9), namely the weight function �i has the following property:

�i(uj) =

8>>><
>>>:

1 j = i

0 j 6= i

(2.64)

Figure 2.8 and 2.9 illustrate the relationship between the element-wise weight

function and the global weight function de�ned over the entire body. The weight

function Ni corresponding to node ui has two parts. Each part is exactly the same

as the corresponding local weight function within the element.

All the previous derivations still hold with the exception that we only have to

consider surface stress on the surface of the body instead of on the boundary of each

element. Therefore we have the following system of global equations:

36

N 1

i−1 N 2

i−1

N 1

i
N 2

i

u
i−1 u i

u i+1Ω i−1 Ω i

Figure 2.8: 1-dimensional example of element-wise weight functions.

u i+1u i

u
i−1

N
i

Figure 2.9: 1-dimensional example of Global weight functions.

37

M�u +D_u+R(u) = F + q (2.65)

where

M =
Z

�T��d
 (2.66)

D =
Z

�T��d
 (2.67)

F =
Z

�Tbd
 (2.68)

and

R(u) =
Z

B�d
 (2.69)

Note that the equivalent global nodal force q is due to the stress and load on the

boundary of the deformable body and it has the following form:

q = �
Z
@

�T td
 (2.70)

where @
 is the boundary of the deformable body; t is the surface traction on the

boundary.

For convenience, we usually combine the F term and q term and rename F + q

the global external force vector F. Therefore we have

M�u+D_u +R(u) = F (2.71)

38

In the equation (2.71), u is the 3n-dimensional nodal displacement vector; _u and

�u, the respective velocity and acceleration vectors; F, the external force vector; M,

the 3n�3n mass matrix; D, the damping matrix; and R(u), the internal force vectors

due to deformation. n is the number of nodes in the FEM model [50].

2.5 Implementation

In terms of implementation, we actually still do the computation locally on each

element and then assemble the elementwise matrices into global matrix. For example,

we compute Me for each element
e and then assemble them into the global mass

matrixM. This assembly is valid due to the fact that volume integral over the entire

body equals to the sum of that over each element, and that the global weight functions

equal to the corresponding local weight function within each element.

The construction of (2.71) requires evaluating volume integrals over each element

e. In general, such a volume integral cannot be evaluated exactly in closed form.

We have to evaluate it using numerical integration. In particular, we apply Gauss

Quadrature [50] to evaluate the volume integrals.

2.6 Special Cases

We have derived the system of nonlinear di�erential equations (2.71) for the dy-

namic behavior of large global deformations. In this section, we would like to point

39

out two special cases, which are familiar to many readers.

One special case is the system of equations for static deformations. It is obtained

by setting the nodal accelerations and nodel velocities to zeros. This leads to the

following system of equations for static global deformation;

R(u) = F (2.72)

Another special case is the small deformations. When deformations are small or

in�nitesimal, we can use the linear strain (2.11) and (2.12). This leads to the following

linear system of di�erential equations for the dynamic behavior of small deformations:

M�u+D_u +Ku = F (2.73)

The corresponding linear system for static small deformations is:

Ku = F (2.74)

2.7 Conclusion

In this chapter we have presented how to model the dynamic behavior of large

global deformations. In next chapter, we will discuss how to solve the nonlinear

system of di�erential equations (2.71). In particular, we will discuss how to solve it

in real-time.

40

Chapter 3

Real-time Simulation of Dynamic

Global Deformations

In chapter 2, we have derived the nonlinear system of di�erential equations (2.71)

for large global deformations. For clarity of the presentation, let us recall that system

of nonlinear equations here:

M�u+D_u +R(u) = F (3.1)

In this chapter, we discuss how to solve this nonlinear system. Especially we focus

on how to solve it in real-time for a �nite element mesh of reasonable size.

First of all, we will discuss the issue of implicit integration versus explicit inte-

gration in chapter 3.1. We argue that implicit integration along the time-dimension

makes real-time performance impossible for even problems of moderate size. There-

41

fore we choose explicit integration over implicit integration. In chapter 3.1.1, we

show that the computational speed is dramatically improved by using a diagonal

mass matrix approximation with the explicit integration scheme.

Secondly, we discuss how we handle collision eÆciently. A traditional penalty

method usually slows down the system dramatically because the integration time

step has to be reduced to prevent object inter-penetration when they are close to

each other. In a virtual surgical environment, objects are always close to each other.

This makes the penalty method inappropriate. In chapter 3.2, we will introduce a

very eÆcient collision handling scheme which requires only a nominal computational

cost in addition to a collision-free dynamic simulation step.

Finally, we discuss the issue of the complexity of the model itself in chapter 3.3.

One primary diÆculty associated with deformable object simulation in 3D is that the

model itself is one order of magnitude more complex than 2D objects, such as clothes.

By one order of magnitude, we mean the size of the 3D model is O(n) larger than

that of a 2D object, where n is the number of nodes in each principle direction. For

example, a 2D �nite element mesh has size of O(n2) with n nodes in each principle

direction. However a 3D �nite element mesh will have a size of O(n3) with n nodes

in each principle direction. To overcome this higher complexity in the size of FEM

mesh of a 3D deformable body, we propose graded meshes in chapter 3.3 and discuss

their properties.

Part of the material presented in this chapter is published by Zhuang and Canny

42

in [46].

3.1 Integration in the Time Dimension

In general there is no closed-form solution to the system of di�erential equations

(3.1). We have to solve it approximately by numerically integrating along the time

dimension. Namely given all the information up to the current time step tn, we have

to solve the following system for time step tn+1 repeatedly:

M�un+1 +D_un+1 +R(un+1) = Fn+1 (3.2)

Note that at time tn+1, the information at all the previous time-steps, t0; : : : ; tn,

are considered as known. Namely ui, _ui and �ui are known for i = 0; : : : ; n.

There are many di�erent integration schemes. In this thesis, we will discuss the

issue of explicit integration versus implicit integration using Newmark recurrence

scheme ([50, 30]).

Newmark recurrence scheme is a single-step integration method. Namely it only

uses the known values at time tn to solve (3.2), while ignoring the history before tn.

Newmark recurrence scheme is as following:

un+1 = un +4tn+1 _un +
1
2
4t2n+1�un+

_un+1 = _un +4tn+1�un+�

(3.3)

43

where

�un+� = (1� �)�un + ��un+1 (3.4)

and

4tn = tn � tn�1 (3.5)

By substituting (3.3) into (3.2), we get a system of equations of only �un+1. For

convenience, we represent this system as:

�(�un+1) = 0 (3.6)

Note that when 6= 0, (3.6) is a nonlinear system of �un+1 because �un+1 appears

in the nonlinear term R(un+1). This leads to an implicit algorithm, namely at each

time step, we have to solve a nonlinear system of �un+1.

Solving a nonlinear system requires a Newton iteration type of algorithm. Namely

at each iteration, we have to compute the di�erential matrix @�
@�un+1

and then solve a

di�erent linear system at each iteration. Although we can avoid the cost of inverting

a di�erent di�erential matrix at each iteration by applying an iterative solver, such as

conjugate gradient solver, the cost of computing the di�erential matrix alone at each

iteration is computationally prohibitive. We have also experienced slow convergence

of the conjugate gradient methods. Furthermore, we usually have to go through

multiple iterations at each time step tn. Therefore, an implicit integration algorithm

makes real-time simulation impossible for an FEM mesh of even moderate size. Our

44

experiment shows that we can only simulate fewer than half a dozen elements in

real-time if we apply this type of integration algorithm.

This leads us to exploring the application of explicit algorithms. When = 0,

the unknown �un+1 does not appear in the nonlinear term R(un+1). This makes (3.6)

a linear system of �un+1. In particular, we choose the central di�erence method with

� = 1
2
. This leads to the following equalities:

un+1 = un + _un4tn+1 +
1

2
�un4t2n+1 (3.7)

(M+
1

2
4tn+1D)�un+1 = Fn+1 �R(un+1)�D(_un +

1

2
�un4tn+1) (3.8)

_un+1 = _un +
1

2
(�un + �un+1)4tn+1 (3.9)

Now we have converted the nonlinear system (3.1) to 3 linear systems (3.7), (3.8)

and (3.9). The order of updating is (3.7), (3.8) and then (3.9). Note that (3.7) and

(3.9) are simple algebraic expressions, which are computationally cheap to evaluate.

Before examining (3.8), we would like to point out that the choice of = 0 already

avoids the need to solve a nonlinear system by Newton iterations. However we do not

have an explicit algorithm unless the matrixM+ 1
2
4tn+1D is diagonal. Next we will

discuss how to make the central di�erence scheme an explicit integration algorithm

by diagonalizingM + 1
2
4tn+1D.

45

3.1.1 Concentration of Mass

In general the mass matrix M and damping matrix D are sparse matrix, but not

diagonal. Therefore (3.8) requires solving a large sparse linear system. Furthermore,

the time step4tn is, in general, not a constant, therefore it is impossible to preprocess

the system by computing the inverse (or the LU decomposition) of this large sparse

matrix. Inverting a large matrix at each integration step makes real-time simulation

impossible for any problem of reasonable size.

To achieve real-time performance, we approximate the distributed mass with con-

centrated masses by lumping the mass matrix ([49, 30]): each row vector in the mass

matrix is replaced by a single value on the diagonal entry, which is equal to the sum

of all values in the corresponding row vector.

At the �rst glance, this approximation may look unacceptable. Actually it is

mathematically equivalent to a special type of numerical volume integration algorith-

m for linear element: nodal Gauss quadrature. Numerical volume integration basically

means sampling the value of the integrand at one or multiple points within the inte-

gration volume and then approximate the volume integration with a weighted sum of

the sampled values. Given a linear �nite element, if we sample exactly at the nodes

of the element, [50] shows that the mass matrix is automatically a diagonal matrix.

Furthermore such a diagonal matrix is identical to the one obtained by lumping the

original mass matrix. Hence the diagonal approximation of the mass matrix is simply

an approximation with a low order numerical integration.

46

In our implementation, we actually do not construct the original mass matrix and

then lump it to a diagonal matrix. Instead we construct it directly using nodal Gauss

quadrature.

Intuitively we can also consider this diagonal mass matrix as approximating the

mass with concentrated point mass at nodal points of the mesh. The original non-

diagonal mass matrix in (2.66) is also an approximation of the inertia property of the

continuum, including the total mass and moment of inertia. However this approxi-

mation still treats the mass as if it is distributed.

The diagonalization process is equivalent to approximating the mass continuum as

concentrated masses at each nodal point of the mesh. By doing this, we basically con-

vert the distributed mass to a particle system. At each integration step, each particle

"behaves" independently of the other particles. The forces acted on each particle, at

each instance of the simulation, consist of external forces, such as gravity, and inter-

nal forces exerted by the neighboring particles (nodes that share the same element).

Unlike a mass-spring system, this particle system does not have an explicitly de�ned

spring structure. Instead the equivalent internal forces on each particle (a node of

the mesh) is modeled using elasticity, approximated by geometrically nonlinear �nite

element method.

Similarly we can also diagonalize the damping matrix D. Note that the damping

matrix de�ned by (2.67) has identical structure to the mass matrix given by (2.66).

We have just converted the matrix M + 1
2
4tn+1D to a diagonal matrix. This

47

simpli�es (3.8) to a set of independent algebraic equations as following:

qi�uin+1 = f in+1 � rin+1 � din+1 (3.10)

where qi is the i� th component of the diagonalizedM+ 1
2
4tn+1D; �uin+1, f

i
n+1, r

i
n+1

and din+1 are the i � th component of un+1, Fn+1, R(un+1) and D(_un +
1
2
�un4tn+1)

respectively. Solving this system of equations requires no matrix inversion.

The diagonalization also makes the enforcement of all types of boundary conditions

very simple. For natural boundary conditions, we specify the force and compute �uin+1.

For essential boundary conditions, we simply ignore equation (3.10) and explicitly set

the corresponding displacement and velocity to the given values.

It is worth pointing out that the critical time step for an explicit integration

scheme is dictated by the largest sti�ness in the material. This is why an explicit

integration scheme is appropriate for soft tissues, which are "soft" in all directions

(although not necessarily isotropic), while it is not appropriate for cloth simulation

[4].

As for any explicit integration algorithm, stability is always a concern. According

to [30], the central di�erence recurrence scheme is conditionally stable when the time

step satis�es the following:

4t �
2

!max

(3.11)

where !max is the maximum natural frequency of the dynamic system (3.1). Since we

48

are simulating soft tissues, the natural frequency is usually large. Therefore we can

use relatively large time steps to have stable simulations.

In our numerical experiments, we notice that the lumped mass matrix actually im-

prove the stability of the dynamic system. [49] shows that lumping can even improve

accuracy of some problem by error cancellation. It can be shown that in transient

approximation the lumping process introduces additional dissipation of energy and

this can help in cancelling out numerical oscillation.

3.2 EÆcient Collision Handling

In this section we address another important issue: how to proceed with the time-

integration when collision occurs?

Any integration strategy at the moment of collision has to ensure that the col-

liding objects do not inter-penetrate each other at the point of collision. This non-

penetration requirement makes obvious physical sense from our real world experience.

The popular penalty methods [39, 38, 40] model the collision by adding an arti�cial

spring of large sti�ness at the point of collision. The sti�ness of such a spring is often

arbitrary because there is no mathematical foundation to its value. The programmer

usually tries several di�erent spring constants until the collision is visually satisfactory.

Furthermore the penalty method adds an extra sti� component to the dynamic

system. In chapter 3.1, we have discussed the advantage of an explicit integration

algorithm over an implicit one. One reason that it is appropriate to use explicit

49

integration algorithm despite its potential instability is that we are only interested

in soft deformable objects. The natural frequency of a soft object is relatively low,

therefore we are able to stably simulate the dynamic behavior using relatively large

time steps. The arti�cial spring in a penalty method is an extra sti� component in

the dynamic system. A dynamic system is only as stable as its most sti� component.

Penalty method requires that we reduce the time step at the moment of collision to

meet the stability requirement of the arti�cial spring attached to the point of collision.

Our experiments have shown that the ratio between a collision free integration

time step and that of a penalty collision is on the order of hundreds if not more.

Thus even if we are able to simulate the dynamic behavior of a soft object when there

is no collision, we lose the real-time performance when collisions occur, by using

penalty methods.

This tempts us to develop new collision-handling methods that avoid adding extra

arti�cial sti�ness into the system. We will illustrate our collision-handling method,

using a special case: collision between a rigid body and a single node of the �nite

element mesh of the deformable body. (�gure 3.1). Later in this section, we will

show that it is straightforward to extend this method to handle general collisions of

deformable objects.

Consider the collision between a moving deformable body and a moving rigid

body (�gure 3.1). To simplify the discussion, we use the moving frame attached to the

moving rigid body instead of the �xed world frame. Namely all quantities are relative

50

nV

rigid surface

deformable body

Vn

Figure 3.1: A exible body collides with a rigid body.

to the moving rigid body. Assume that at time tn, the node p on the deformable

object, with relative velocity v̂(p)n, is colliding with the rigid surface of outward

normal n̂. The non-penetration constraint requires that the normal component of

the relative velocity of point p drops to zero at the moment of collision in the moving

frame. Unlike a rigid body collision, the exible body will maintain contact with the

rigid body for a nonzero period of time. We enforce the non-penetration constraint

at node p by setting the normal component of v̂(p)n+1 to zero as following:

v̂(p)n+1 = v̂(p)n � (v̂(p)n � n̂)n̂ (3.12)

Let â(p)n and â(p)n+1 be the acceleration of point p at time tn and tn+1, respec-

tively. Apply equation (3.9) to point p, we have:

v̂(p)n+1 = v̂(p)n +
1

2
(â(p)n + ân+1)4tn+1 (3.13)

Solve (3.13) for â(p)n+1 , we get

51

â(p)n+1 =
2v̂(p)n+1
4tn+1

�
2v̂(p)n
4tn+1

� â(p)n (3.14)

Apply (3.7) to the point p at time tn+2, we have:

û(p)n+2 = û(p)n+1 + v̂(p)n+14tn+2 +
1

2
â(p)n+14t2n+2 (3.15)

Substituting (3.14) into (3.15), we have

û(p)n+2 = û(p)n+1 + v̂(pn+1)4tn+2

+1
2
(2v̂(p)n+1
4tn+1

� 2v̂(p)n
4tn+1

� â(p)n)4t2n+2

(3.16)

If we choose the time steps at time of collision such that 4tn+2 = 4tn+1, we have

û(p)n+2 = û(p)n+1 + v̂(p)n+14tn+2

+v̂(p)n+14tn+2 � v̂(p)n4tn+1 �
1
2
ân4t2n+1

= û(p)n + û(p)n+1 + 2v̂(p)n+14tn+2

�(û(p)n + v̂(p)n4tn+1 +
1
2
â(p)n4t2n+1)

= û(p)n + 2v̂(p)n+14tn+2 + û(p)n+1 � û(p)n+1

= û(p)n + 2v̂(p)n+14tn+2

(3.17)

By (3.12), we have

v̂(p)n+1 � n̂ = 0 (3.18)

Therefore we have the following equality:

52

ûn+2 � n̂ = ûn � n̂ (3.19)

Equality (3.19) shows that the non-penetration constraint is enforced after two

time steps, because there is no relative motion of the deformable body normal to

the surface of the rigid body. Furthermore, equality (3.17) shows that the local

tangential motion, on the surface around the point of collision, is still permitted. The

guaranteed non-penetration and permitted local tangential motion is exactly what

we need to model collisions.

This collision integration scheme can be generalized to collisions between de-

formable bodies and collisions that involve multiple point contacts. Multiple point

collisions are modeled as a set of simultaneous single point collisions.

This collision-handling integration scheme can be considered a special case of im-

pulse [3]. For rigid body collisions, an impulse requires extremely small time steps for

numerical integration because the rigid body collision is considered to occur instan-

taneously. However, for deformable body collisions, the collision time is �nite. By

delaying the non-penetration constraint by two time steps, we are able to integrate

the impulse using large time steps.

Our collision-handling strategy does not have to distinguish the case that the

colliding deformable objects quickly bounce away from each other and that one sticks

to or slides on the surface of the other. The bouncing collision, the sticking and

sliding contacts, are handled by exactly the same collision integration constraint.

53

This collision constrain adds little extra cost to the dynamic simulation.

Finally we would like to point out that our collision-handling strategy does lose

energy. When we set the velocity normal to the colliding surface to zero, the dynamic

system loses some energy. However this loss of energy is too small to a�ect the

simulation outcome in general. The energy loss decreases when we are using �ner

mesh and this energy loss converges to zero when the number of elements goes to

in�nity.

3.3 Graded Mesh

C

A

B

Figure 3.2: A 2D example of graded mesh.

54

While 2D �nite element methods have great success in achieving real time perfor-

mance in computer graphics applications, the computational cost is much higher for

3D applications, mainly due to the increase in the number of elements in the mesh.

In a roughly uniform 2D �nite element mesh, the number of elements is about O(n2),

where n is the average number of elements in each principle direction. However a

similar 3D mesh would have O(n3) elements, which leads to a much larger system of

equations.

A mesh has to be �ne enough to capture the relevant modes. To illustrate this, let

us consider using �nite element method to simulate a wave in a soft material, which

is one special kind of deformation. When the spatial frequency of the wave increases,

we need �ner elements to simulate the wave. When the spatial frequency decreases,

we need fewer elements. Modal analysis shows that deformation can be approximated

by model composition, where each mode is corresponding to a deformation of a �xed

spatial frequency.

In terms of computational eÆciency, it would be desirable to reduce the number

of elements in the �nite element mesh while being able to satisfy the requirement of

accuracy.

Nicolson [25] makes the following empirical observation based on many simula-

tions:

Observation 1 The cuto� spatial frequency of an object in response to external loads

decreases faster than 1=d in terms of the distance d away from the surface of the object.

55

This means that for a given error bound, we need �ner elements on the surface and

coarser elements away from the surface. Furthermore Nicolson's [25] result suggests

that if the size of the element increases proportionally to d, we will lose little accuracy

with respect to static forces exerted on the surface. Based on this observation, we

propose using a graded mesh to model 3D objects. A 2D example of such mesh is

shown in �gure 3.2. Extension of this 2D example to a 3D hexahedral mesh is straight-

forward. Such a mesh reduces the complexity of 3D models from O(n3) to O(n2).

Furthermore, the graded mesh has the property that the element size is proportional

to the distance from the surface, hence the error is bounded by a constant.

In general, a graded mesh has a severe drawback despite its reduction of the mesh

size. It is computationally costly to enforce the compatibility at element interface.

To simplify the presentation, we discuss this using the 2D example in �gure 3.2.

However, note that the discussion applies to 3D hexahedra mesh as well.

For a mesh of linear quadralateral elements, the edge of each element is always

a straight line. Therefore the node such as C in �gure 3.2 is constrained by node A

and B. Namely the displacement of C has to be such that A, B and C are always

co-linear. We refer to a node such as C as a geometrically constrained node. The

general solution is to use a Lagrangian multiplier, which expands the system and

therefore adds extra computational cost to the simulation.

However since we have a diagonalized system (3.10), the compatibility at element

interface can be easily enforced without a Lagrangian multiplier. For unconstrained

56

nodes, such as A and B, we proceed with the computation as presented in section

3.1. For a constrained node, such as node C, we simply set its displacement to the

average of that of A and B. This explicitly enforces the compatibility without any

additional computational cost.

Figure 3.3: Triangular graded mesh.

Figure 3.3 shows a graded triangular graded mesh. Such a triangular graded mesh

can also be extended to 3-dimensional tetrehedral mesh. The algorithms discussed in

Hebert's ([17]) symbolic local re�nement of tetrahedral mesh can be directly applied

to generate a graded tetrahedral mesh in 3D.

For triangular mesh, the incompatibility issue on the element interface does not

arise.

57

3.4 Discussion

In chapter 2, we have shown that simulation of global deformations requires solving

the system of equations (3.1). In this chapter, we have presented how to solve system

(3.1) in real-time.

First we show that it is impossible to solve (3.1) in real-time by implicit integration

algorithms. Our experiments show that we can only simulate, in real-time, a mesh of

fewer than half a dozen elements, if we apply implicit integration algorithms.

In order to have an explicit integration algorithm for real-time performance, we

diagonalize the mass and damping matrix by row lumping. Row lumping is equivalent

to gauss quadrature using nodal sampling.

Explicit integration schemes always raise the issue of stability. Fortunately, we

are only interested in soft tissues. This allows a relatively large time step for stable

simulations.

The diagonalized mass matrix combines the advantages of �nite element methods

and mass-spring systems. A mass-spring system is less accurate in terms of mathe-

matical formulation. However it is cheap to solve a mass-spring system because it is

a decoupled system from the very beginning. By diagonalizing the mass matrix in

our FEM simulation of global deformations, we still have the accurate strain model-

ing provided by �nite element methods but we also only have a decoupled system to

solve.

Secondly, we have introduced an eÆcient collision-handling strategy in chapter

58

3.2, which removes a bottleneck in the real-time simulation of global deformations.

Our collision-handling strategy enables us to simulate the collision with norminal

extra cost.

Finally, we have proposed a graded mesh in 3.3 to reduce the size of the model

itself. Asymptotically the graded mesh reduces the size of the mesh by O(n), where n

is the number of elements in each principle direction. If a uniform 3D �nite element

mesh has O(n) elements in each principle direction, the size of the dense mesh is

O(n3). A corresponding graded mesh with similar static accuracy only has a size of

O(n2) instead.

Implicit integration algorithm only allows us to simulate a mesh of a few elements

in real-time. After diagonalizing the mass matrix, the explicit integration algorithm

allows us to simulate a mesh of more than 600 elements in real-time. By applying a

graded mesh, 600 elements gives the same accuracy of a uniform mesh of more than

1000 elements.

We would like to close this chapter by pointing out one problem with diagonalizing

the mass matrix and the damping matrix. Most tissue models are visco-elastic. The

visco-elasticity will be reected in the damping matrix. Although diagonalizing the

mass matrix is acceptable, diagonalizing the damping matrix may lose some important

material properties. We will address this problem in next chapter.

59

Chapter 4

Modi�ed Nested Dissection

The bottleneck of Newmark scheme is solving equation (3.8). It requires inverting

a large sparse matrixM+ 1
2
4tnD. This matrix is not a constant matrix because the

time step 4tn may vary over time. Inverting a di�erent large sparse matrix makes

real time performance impossible.

To achieve real-time performance, Zhuang and Canny [46] approximated this ma-

trix with its row-lumped diagonal matrix. This is equivalent to diagonalizing both the

mass matrix M and the damping matrix D. The diagonalization of M is acceptable

because it still preserves the global inertia property of the object, although it does

not preserve the local moment of inertia. The diagonalization of the damping matrix

may lose important viscous elasticity property of the material. For simulations that

require more physical realism, diagonalization of matrix D is not appropriate.

In this chapter, we propose a di�erent treatment by preprocessing. The matrices

60

M and D are contants. The only variable is 4tn. The time step 4tn depends on the

stability requirement of the system and the collision handling requirement. Instead

of approximating these two matrices as [46] does, we restrict the time step 4tn to a

small set of values. Let T be the largest time step allowed, we de�ne the restricted

set of allowed time steps as fT=2iji = 0; 1; : : : ; mg. We choose the value m such that

T=2m < Tmin, where Tmin is the minimum time step in the worst case.

By restricting time steps to such a small set of values, we only have m+1 possible

matrices needed for the entire simulation. We can therefore pre-compute the m + 1

inverse matrices before the simulation begins.

Instead of precomputing the inverse of matrix (M + 1
2
4tnD), we precompute its

LU-factorization. Given the LU-factorization, solving equation (3.8) only requires

back-substitution. The time for back-substitution is determined by the number of

nonzeros in the LU-factorization of (M+ 1
2
4tnD). In section 4.1, we discuss how to

reduce number of nonzeros in the LU-factorization.

Part of material presented in this chapter has been published by Zhuang and

Canny in [48].

4.1 Nested Dissection

A typical �nite element simulation has to solve a large sparse linear system of

large number of nonzero entries. For example, a 10� 10� 10 linear hexahedral mesh

for 3D linear elasticity gives a sparse matrix of 3993 � 3993 with 242435 non-zeros,

61

middle
left right

middle
rightleft

(a) (b)

Figure 4.1: (a) The dissector in the regular nested dissection algorithm is a layer of
nodes. (b) The simpli�ed version of the modi�ed nested dissection algorithm uses a
layers of elements (shaded), cut by a plane (or a line in 2D), as the dissector.

which is about 1:5% of the size of a dense matrix with the same dimensions. To solve

such a system eÆciently, we have to avoid operating on zeros as much as we can.

However how eÆciently we can do so largely depends on the sparsity of the matrix:

the position of the nonzero entries.

Given a �nite element model of a physical problem, the values of non-zeros of

(M + 1
2
4tnD) are determined by the underlying model, while the positions of those

non-zeros are determined by the indices of the variables. For convenience, let us

denote matrix (M + 1
2
4tnD) by A. The entry (i; j) of A is nonzero if and only

if the variable xi and xj are related. Given such a sparse matrix A = LU, the

LU-factorization takes O(
P

j dj) space and O(
P

j d
2
j) time, where dj is the number

of non-zeros in each column vector of L [13]. If we assume that no exact numerical

62

Leftzeros

zeros

M

Right

M−leftM−right

(a) (b) (c)

Figure 4.2: (a) The block structure of sparse matrix A after the �rst dissection. (b)
The sparse matrix structure generated by regular nested dissection. (c) The sparse
matrix using "Simple-Modi�ed-Nested-Dissection".

cancellations can occur, L will have non-zeros below the diagonal everywhere that A

does. We de�ne �lls to be the below-diagonal entries in which L is nonzero and the

corresponding entry of A is zero.1

Di�erent ordering of the row and column vectors of the matrix A has no e�ect

on the underlining physical problem that we are solving. However it dramatically

change the number of �lls. In order to reduce the space and running time for LU-

factorization and the time of the corresponding back-substitution, we would like to

minimize the number of �lls. Unfortunately �nding the order that gives the smallest

�lls is an NP-complete problem [45].

For sparse matrix that arises from regular �nite element mesh, George [11] pro-

posed a heuristic called nested dissection for ordering the variables of the system such

that it gives a small number of �lls.

1
A is symmetric.

63

Unfortunately an FEM mesh is often unstructured. In this section, we propose a

modi�ed nested dissection that works on any unstructured �nite element mesh. Later

we will compare the performance of our algorithm to Metis [19].

4.1.1 Modi�ed Nested Dissection

For the simplicity of the presentation, let us consider a 2-dimensional �nite element

mesh, where each node has one degree of freedom.2 A mesh of n nodes leads to a

sparse matrix A of size n� n. An entry (i; j) is nonzero if and only if the node i and

j are in the same element.

For the mesh generated on regular grid (Figure 4.1(a)), the regular nested dissec-

tion [11] algorithm recursively divide the unordered nodes into 3 groups: left, middle

and right. The group middle is just a set of nodes that completely separate left and

right. This algorithm orders the nodes such that its sparse matrix has fractal sparsity

as shown in �gure 4.2(b). After the �rst step of recursion, we immediately get 2 blocks

of zeros as shown in �gure 4.2(a), because left and right are not directly related.

Unfortunately the regular nested dissection algorithm requires a �nite element

mesh de�ned on regular grid. For an unstructured mesh, it would be diÆcult to �nd

middle to dissect the mesh. In computer graphics, most meshes are unstructured.

This motivated us to extend regular nested dissection to unstructured �nite element

meshes.

2This can be easily generalized to multiple degrees of freedom and 3-dimensional meshes.

64

For simplicity of the presentation, we �rst introduce a simpli�ed version of our

modi�ed nested dissection algorithm. Later we will discuss how to apply graph theory

to improve it.

4.1.1.1 Simple Modi�ed Nested Dissection

Instead of separating the set of unordered nodes using a layer of nodes, we \cut"

the mesh by a axis-aligned plane. It is easy to compute the set of elements cut by

this plane. We let middle be the set of unordered nodes in the elements cut by this

plane and continue recursively as the regular nested dissection.

This simple modi�ed nested dissection can be applied to any unstructured �nite

element meshes, including tetrahedral meshes. Figure 4.1(b) shows one step of such

a dissection. It also leads to the block structure as shown in �gure 4.2(a), except that

the size of the M -block is bigger. At the end, we still get an ordering that gives a

sparse matrix with fractal sparsity (Figure 4.2(c)). Due to the larger size of matrix

M , the two \wings" (M � left and M � right) are wider at each level.

The pseudo code of the modi�ed nested dissection is as following:

Simple-Modi�ed-Nested-Dissection(E, top, perm)

if E:length = 0 then

return.

else if E:length = 1 then

for each node j in E[0] do

65

if perm[j] != �1 do

perm[j] = top

top��

endif

else

Find-dissector(E).

middle = all the elements cut by the dissector.

left = elements to the \left" of the dissector.

right = elements to the \right" of the dissector.

Modi�ed-nested-dissection(middle, top, perm).

Modi�ed-nested-dissection(left, top, perm).

Modi�ed-nested-dissection(right, top, perm).

endif

Before calling this function the �rst time, we initialize each entry of the permu-

tation array perm to -1 (order unassigned), and we compute the centroid of each

element. The function Find-dissector simply computes the 3 medians along x, y and

z direction and compare the number of elements cut by the axis-aligned planes thru

the medians and return as the dissector the plane with the minimum cut.

66

(a) (b)

Figure 4.3: (a) The connectivity graph corresponding to the the elements intersected
by the cutting plane. (b) The corresponding bipartite graph.

4.1.1.2 Improvement Using Graph Theory

We can actually improve the "Simple-Modi�ed-Nested-Dissection" algorithm sig-

ni�cantly by applying graph theory to "middle". Consider the corresponding connec-

tivity graph of "middle" (Figure 4.3(a)). Recall that two nodes are connected if and

only if they share the same element. A minimum vertex cover of this connectivity

graph will be a separator, which is only about half the size of the separator in the

"Simple-Modi�ed-Nested-Dissection" algorithm.

In general, a vertex-cover problem is NP-complete [6]. Fortunately we can further

convert the connectivity graph to a bipartite graph. The edges on the same side of

the cutting plane are not signi�cant because we only want to separate the "left" from

the "right". Therefore, we only need to consider the edges crossing the cutting plane,

which leads to the bipartite graph in �gure 4.3(b).

67

Harary [16] shows that a vertex cover problem is equivalent to a maximum match-

ing problem. Namely given the maximum matching of a graph, one can easily convert

it to a minimum vertex cover in polynomial time. Cormen et al [6] shows how to �nd

a maximum matching for a bipartite graph using Ford-Fulkerson method in time

polynomial in jV j and jEj, where jV j is the number of vertices in the bipartite graph

and jEj is the number edges in the bipartite graph. Therefore we have a simple poly-

nomial time algorithm to �nd a minimum vertex cover of the bipartite graph in �gure

4.3(b). Such a minimum vertex cover is a small separator.

4.1.2 Running time

It takes O(n) time to �nd the median given a list of n numbers [6]. It also only

takes O(n) time to �nd the elements intersected by the cutting plan. The time to

separate the list is also O(n). The depth of the recursion is apparently O(logn).

Thus the total running time for the "Simple-Modi�ed-Nested-Dissection" algorithm

is O(n logn).

Cormen et al [6] shows that it takes O(jV jjEj) time to compute the maximum

matching of a bipartite graph. Since jEj has size O(jV j) in our case, it takes O(n2)

to �nd the minimum separator at each recursion. Harary [16] shows that it takes

O(jV j) time to compute the minimum vertex cover, given the maximum matching of

a graph. Therefore the improved version of the modi�ed nested dissection algorithm,

using minimum vertex cover, takes O(n2 logn) time.

68

Fills
Test Size(n) nnz random minimum simple modi�ed nested

degree nested-dissection dissection

1 192 6348 3636 1836 2034 1980
2 375 15285 25722 9342 10269 8586
3 648 30060 89199 31041 28872 26145
4 882 42384 196641 47286 50481 42462
5 1029 52131 254718 74880 73845 57537
6 1176 60360 332766 96381 88785 71685
7 1344 69888 487701 117900 112365 91971
8 1536 82956 657612 149652 153936 116514
9 1728 94266 813186 225801 182817 141741
10 1944 107118 1036521 261072 224280 175743
11 2187 123993 1361250 300312 286929 224973
12 2430 138870 1687527 347985 337383 264609
13 2700 155532 452574 410346 317898
14 3000 176700 550215 519804 385200
15 3300 195630 644067 595296 442053
16 3630 216588 787410 706131 514395
17 3993 242535 1100817 861705 610515
18 4356 266004 1262097 979875 684378

Table 4.1: Number of �lls for di�erent ordering.

4.1.3 Numerical Experiments

In order to measure the performance of the modi�ed nested dissection algorithm,

we compare its �lls and LU-factorization time with that of regular nested dissection

and that of minimum-degree algorithm [21, 12]. All the matrices are derived from a

3-dimension �nite element mesh of linear hexahedral elements. The comparison of

number of �lls is listed in table 4.1 and that of the LU-factorization time is listed in

table 4.2. In both tables, n is the number of variables (the dimension of the matrix),

and nnz is the number of non-zeros in the original matrix. Recall that "�ll" is the

69

LU factorization time (seconds)
Test Size(n) nnz random minimum simple modi�ed nested

degree nested-dissection dissection

1 192 6348 0.07 0.05 0.04 0.04
2 375 15285 0.55 0.18 0.17 0.17
3 648 30060 3.38 0.70 0.58 0.53
4 882 42384 10.66 1.07 1.11 0.87
5 1029 52131 15.31 1.98 1.77 1.23
6 1176 60360 22.75 2.67 2.15 1.54
7 1344 69888 40.08 3.54 2.93 2.02
8 1536 82956 61.19 4.65 4.44 2.80
9 1728 94266 86.39 8.86 5.39 3.56
10 1944 107118 123.27 9.88 7.00 4.52
11 2187 123993 192.59 11.31 9.99 6.05
12 2430 138870 274.96 14.15 11.87 7.45
13 2700 155532 21.49 14.91 9.39
14 3000 176700 28.49 21.20 12.51
15 3300 195630 35.26 24.78 15.20
16 3630 216588 46.60 31.96 19.76
17 3993 242535 87.84 41.00 23.56
18 4356 266004 94.44 47.41 27.31

Table 4.2: Time measured on HP9000/715.

number of additional non-zeros in the LU-decomposition.

Minimum-degree ordering is an alternative ordering proposed to handle general

matrix. It is an greedy algorithm that does the ordering directly on the connectivity

graph de�ned by the matrix. Our numerical experiments show that even the simpli-

�ed version of our modi�ed nested dissection algorithm has an apparent advantage

over the minimum-degree ordering, in both space and running time. Our "Simple-

Modi�ed-Nested-Dissection" algorithm produces an order that has less �lls, than the

minimum-degree ordering, in 17 of 18 tests, while it has a better LU-factorization time

70

in all 18 test. The modi�ed nested dissection algorithm using vertex cover has perfor-

mance almost the same as regular nested dissection applied on meshes de�ned over

regular grid. For this reason the numbers for the minimum vertex cover algorithm

are not listed in the table. The result is plotted in �gure 4.4.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

2

4

6

8

10

12

14
x 10

5

size (n)

nu
m

be
r

of
 fi

lls

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

10

20

30

40

50

60

70

80

90

100

size (n)

LU
−

fa
ct

or
iz

at
io

n
tim

e

(a) (b)

Figure 4.4: The result for minimum degree ordering is plotted in dashed line, Simple-
Modi�ed-Nested-Dissection in solid line, and the standard nested dissection in dash-
dot line. (a) Number of �lls. (b) Running time.

We have also run our 18 tests using Metis3.0.3, developed by Karypis and Kumar

[19]. Metis3.0.3 �rst converts the �nite element mesh to a graph and then performs

graph partition to obtain the �ll-reduction reordering of the variables in the mesh. In

our comparisons, our modi�ed nested dissection algorithms outperform Metis3.0.3 in

all 18 tests. This shows that geometry of the mesh itself gives better heurstics than

its connectivity graph.

While the modi�ed nested dissection algorithm using vertex cover performs much

71

better in both time and space, the simpli�ed version of the modi�ed nested dissec-

tion algorithm requires signi�cantly less time for LU-factorization while only having

slightly less �lls than the minimum-degree ordering. This shows that the modi�ed

nested dissection leads to better sparsity: non-zeros are more optimally positioned in

the matrix.

4.2 Conclusion and Discussion

In chapter 2 and chapter 3, we presented the nonlinear FEM system to model

and simulate global deformations. It is in general too computationally expensive

to solve such a nonlinear FEM system in real time. In order to achieve real-time

performance, without diagonalizing the mass and damping matrix as in chapter 3.1.1,

we pre-compute the LU-factorization of a small number of large sparse matrices. Such

preprocessing is possible because we restrict the time steps to a small set of values.

Our experiments show that usually we only need no more than 3 di�erent values for

time steps.

To reduce the time and space for LU-factorization and the time of back-substitution,

we apply nested dissection to reorder the vertices in the �nite element mesh. Such

a reordering does not change the physical model that we are simulating. But it

dramatically reduces the number of nonzeros in the LU-factorization.

We modi�y the regular nested dissection algorithm so that it works on unstruc-

tured �nite element mesh. The ordering produced by the modi�ed nested dissection

72

algorithm using vertex cover has almost the same performance as regular nested dis-

section algorithm in both space and time. The "Simple-Modi�ed-Nested-Dissection"

ordering takes 30% to 50% more time for the LU-factorization than the regular nested

dissection, however it is more general than the regular nested dissection: it is able to

handle any unstructured �nite element mesh. This performance gap has been closed

when we improve the algorithm by applying vertex cover.

Our current implementation simply uses a cutting plane and separates the mesh

using the vertex cover of the bipartite graph derived from the elements intersected

by the cutting plane. There seem to be a better algorithm using a topological sweep

[8]. A topological sweep may intersect a smaller set of elements of the mesh. This

may lead to a modi�ed nested dissection algorithm with better asymptotic bound.

Notice that the non-constant matrix (M+ 1
2
4tnD) only has one degree of freedom

4tn, while both M and D are constant matrices. This suggests that it is possible to

eÆciently compute an approximate inverse by interpolating for any 4tmin < 4tn <

4tmax, if we preprocess the exact inverse for (M + 1
2
4tminD) and (M + 1

2
4tmaxD).

We are currently studying this approach and its error bound.

73

Chapter 5

Haptic Interaction with Global

Deformations

Force feedback coupled with a real-time physically realistic graphic display pro-

vides a human operator with an arti�cial sense of presence in a virtual environment.

Furthermore, it allows a human operator to interact with the virtual environment

through "touch". In this chapter, we propose a haptic simulation system that al-

lows a human operator to perform real-time interaction with soft 3D objects that go

through large global deformations. We model and simulate such a global deformation

using geometrically nonlinear �nite element methods, as discussed in chapter 2 and

chapter 3. We also introduce an eÆcient method that computes the force feedback, in

real-time, by simulating the collision between the virtual "proxy" and the deformable

object. To perceptually satisfy a human operator, haptics requires a much higher

74

update frequency (at least 1000Hz) than graphics. We update the graphics using full

simulation and interpolate the fully simulated states at a higher frequency to ren-

der haptics. The interpolation is made possible by intentionally delaying the display

(both graphics and haptics) by one full simulation cycle.

Part of the material in this chapter has been published by Zhuang and Canny in

[47].

5.1 Introduction

The word haptic refers to something that is associated with the sense of touch.

In a haptic simulation, to achieve a virtual sense of touch, the human operator inter-

acts with an active mechanical device, called a haptic display. A haptic simulation

system includes the following essential elements: a human operator, a haptic display,

a graphic display and a virtual environment. The human operator makes physical

contact with the haptic display. The coupling of real-time graphic and haptic displays

provides the human operator an arti�cial sense of kinesthetic presence in a virtual

environment. Furthermore, it allows a human operator to interact with the virtual

environment through "touch".

A haptic display can take on many forms, most commonly a robotic manipulator

with the ability to exert forces on a human. One of the most successful haptic

displays is the Phantom. Other haptic displays include Salisbury Hand, mini-WAM,

Shah �nger, etc. [36].

75

Applications of haptic simulation include, but are not limited to, surgical training,

physical rehabilitation, computer-aided design, and entertainment. A haptic simu-

lation system can also enhance a human operator's ability to perform certain tasks

[9, 26].

Figure 5.1: A virtual hand interacting with a soft cantilever beam.

In this chapter, instead of addressing a speci�c application of haptic simulation, we

address the bottleneck problem of real-time interaction with large global deformations

of 3D soft objects, with physically realistic force feedback. By global deformations,

we mean deformations, such as twisting and bending of an object, which involve the

entire body, in contrast to poking and squeezing, which involves a relatively small

region of the deformable object.

To simplify the control of the haptic device, we represent our haptic device by

a virtual proxy (section 5.3). The force feedback exerted on the human operator by

the haptic display is simulated by the collision between this virtual proxy and the

deformable object (section 5.4.1). We model and simulate the global deformations

76

of 3D objects using a displacement based nonlinear �nite element method (FEM)

(chapter 2).

While real-time graphic display requires an update rate of only 30Hz, stable haptic

display requires an update rate of at least 1000Hz. In this chapter, we propose a

simple interpolation scheme (section 5.4.2) that can interpolate force feedback at the

required high frequency, while the virtual environment is only simulated at a lower

frequency.

5.2 Related Work

Our work involves both real-time realistic visual e�ects and haptic e�ects. Com-

puter graphics and haptics share the same goal of evoking the sensation of objects

by appropriate sensory stimulation. Graphic rendering techniques seek to provide

the perception of an object's color, geometry, surface texture, etc., by rendering an

appropriate image. Haptic rendering techniques seek to provide the human opera-

tor with the appropriate force feedback to "feel" the geometry, surface and material

property of the object.

In the computer graphics domain, our work of modeling and simulating a de-

formable object falls into the realm of physically based modeling. The related works

are discussed in chapter 1.1.

On haptic displays, Salisbury [36] reviews the history of haptic devices. Srinivasan

and Salisbury [37] reviews the issues and challenges in haptic feedback. Mark et al [22]

77

describes solutions of adding force feedback for static models into computer graphics

systems. Adachi et al [1] addresses the problem of haptic display of curved surfaces

using an intermediate representation. Velula and Bara� [41] discuss the integration

of force feedback into their rigid body dynamics simulation system [2]. Minsky et

al [23] addresses various haptic feedback techniques for surface textures. Ruspini et

al [34, 35, 33, 31, 32] applies robotic motion planning techniques to haptic interac-

tions in a virtual environment. Furthermore, they describe a new haptic rendering

library HL, which enables graphics programmers to add haptics into a graphic virtual

environment.

5.3 Haptic Model Overview

The haptic simulation includes a human operator, a haptic device (such as a

PHANToM manipulator, a CyberGrasp glove, etc.), a graphic display, and a virtual

environment. The human operator makes physical contact with the haptic device

through pushing, grasping or some other mechanism. The haptic device provides

the operator with a kinesthetic sense of presence in the virtual environment through

appropriate force feedback.

In this chapter, we describe a system that allows users to virtually interact with

objects exhibiting large deformations. The real-time haptic feedback is coupled with

a real-time graphic display.

To simplify the control of the haptic device, we simulate the force feedback using a

78

virtual proxy similar to that of Ruspini et al [35, 33], and the "god object" of Zilles and

Salisbury [51]. Our virtual proxy is di�erent from that of Ruspini et al [35, 33] because

our proxy's motion is guided by the dynamic simulation. Namely upon collision, the

motion of the proxy is guided by physics instead of a local minimization.

In chapter 2 we have described how we model dynamic global deformations, using

geometrically nonlinear �nite element methods. In chapter 3 we have discussed how

to simulate such a dynamic global deformation in real-time. In particular, since real-

time performance is crucial to force feedback, we choose to diagonalize the mass and

damping matrix as in chapter 3.1.1. In section 5.4, we will describe how the simulation

can be used to provide haptic feedback to the human operator through the haptic

device. In section 5.4.2, we will describe how we display graphics and haptics at

di�erent frequencies.

5.4 Haptic Display

We provide force feedback by simulating the collision between the deformable

object and the virtual proxy. To provide stable haptic feedback within limited com-

putational power, we run full FEM simulation at a low frequency. The required high

frequency haptic feedback is obtained by interpolating between the simulated states.

79

5.4.1 Collision with the Proxy

A virtual proxy is a rigid object with a piecewise di�erentiable surface. Usually

a proxy has a very regular shape, such as a sphere or a cylinder. However in this

section, we will discuss collisions using a proxy of general shape.

The popular penalty methods [39, 38, 40] model the collision by adding an arti-

�cial spring of large sti�ness at the point of collision. This sti� spring requires tiny

integration time steps to stably simulate a collision. Various experiments show that

the ratio between a collision free integration time step and that of a penalty collision

is on the order of hundreds if not more.

In chapter 3.2, we have developed a new collision-handling strategy that avoid

adding extra arti�cial sti�ness into the system. That strategy can be directly applied

to simulating the collision between a rigid proxy and the �nite mesh of a deformable

body.

First we consider the special case: collision between a rigid proxy and a single node

of the mesh (�gure 5.2). Later in this section, we will show that it is straightforward

to extend this method to handle general collisions between the virtual proxy and the

deformable body .

Consider the collision between a moving deformable body and a moving rigid vir-

tual proxy (�gure 5.2). To simplify the discussion, we use the moving frame attached

to the proxy instead of the �xed world frame. Namely all quantities are relative to

the moving proxy. Assume that at time tn, the node p on the deformable object,

80

nv

vn

deformable
object

rigid proxy

p

Figure 5.2: A rigid proxy collides with a soft object.

with relative velocity v̂(p)n, is colliding with the rigid surface of outward normal n̂.

The non-penetration constraint requires that the normal component of the relative

velocity of point p drops to zero at the moment of collision in the moving frame.

Unlike a rigid body collision, the exible body will maintain contact with the rigid

body for a nonzero period of time. We enforce the non-penetration constraint at node

p by setting the normal component of v̂(p)n+1 to zero as following:

v̂(p)n+1 = v̂(p)n � (v̂(p)n � n̂)n̂ (5.1)

If we choose 4tn+1 = 4tn+2, by results derived in chapter 3.2, we have

ûn+2(p) � n̂ = ûn(p) � n̂ (5.2)

This shows that the non-penetration constraint is enforced after two time steps,

81

because there is no relative motion of the deformable body normal to the surface of

the rigid proxy at node p.

Note that the choice of 4tn+1 = 4tn+2 does not mean that the entire simulation

has to use a constant time step. Indeed the simulation can still use variable time

step. This constraint (choice) is only enforced at collision time.

Equality (3.14) gives the equivalent acceleration at point p. Then we can use

equation (3.10) to compute the equivalent force exerted at point p of the deformable

object, which is a force normal to the collision surface. The reaction force exerted on

the virtual proxy has the same quantity as this force, but in the opposite direction.

This equivalent force also enables us to compute the Coulomb friction and simulate

a frictional collision, and provide friction feedback.

This collision integration scheme can be generalized to a general haptic interface.

A general haptic interface involves multiple virtual proxies (for instance, a virtual

hand), therefore multiple point contacts. Since the system is decoupled (chapter

3.1.1), such a collision is modeled as a set of simultaneous independent single point

collisions.

Our approach is di�erent from that of Ruspini et al [35, 33]. Instead of explicitly

minimizing the distance between the current con�guration and the goal con�guration,

upon collision, we let physics naturally guide the motion of the virtual proxy. The

motion is more physically realistic, compared to that obtained by a purely geometric

minimization.

82

5.4.2 Haptic Interpolation

While the graphic display of the global deformations requires an update rate of

only 30Hz, the stable and smooth haptic display requires an update rate of at least

1000Hz. It is impossible to simulate the global deformation at such a high frequency,

with a desktop computer. Note that each graphic frame usually requires multiple

integration steps, because the explicit integration scheme has to be smaller than the

critical time step to be stable. Therefore although the graphic display is at 30Hz,

our system actually simulates the global deformations and the collision between the

proxy and the deformable object at a slightly higher frequency1. To display haptics

at 1000Hz or higher, we will interpolate the haptics between two simulated states

using the necessary high frequency.

Given the simulated states at time tn and tn+1, it is straightforward to interpolate

the haptics between them. Basically any interpolation scheme, such as a simple linear

interpolation, will do. The problem is that at time tn, we do not have the information

about tn+1.

Our proposed solution to this problem is that we simply delay the entire simulation

display, both graphically and haptically, by one integration time step. This intentional

time lag lasts a few miliseconds. For a virtual interaction with soft objects, such a

small lag in time is within the tolerance of human perception. The advantage of such

a time delay is that we have already simulated the state at time tn+1 when we display

1Each explicit integration step is a full simulation step.

83

the graphics and haptics at time tn, which makes the haptics interpolation from time

tn to tn+1 straightforward.

5.5 Conclusions and Discussions

In this chapter, we proposed a haptic simulation system that allows a human

operator to interact with 3D global deformations in real time. Due to the distortion

associated with linear strain, we simulate the global deformation using geometrically

nonlinear �nite element methods. The nonlinear FEM formulation is derived from

the application of the nonlinear exact strain (Chapter 2).

It is in general too expensive to solve such a nonlinear FEM system in real time. In

order to achieve real-time performance, we diagonalize the mass matrix approximately

(Chapter 3.1.1). This diagonalization is equivalent to converting the distributed mass

to a particle system of concentrated mass.

Since a stable haptic display requires force computation at a much higher fre-

quency than that required by real-time graphics, we proposed a simple interpolation

technique by intentionally delaying the display (both graphic and haptic) by one full

simulation cycle. This takes advantage of the fact that human perception tolerates

a small delay of a few miliseconds. Such a delay turns a complicated extrapolation

into a simple interpolation.

We do recognize the possibility of extrapolating haptics without time delay, by

estimating a constant local sti�ness. However this extrapolation is more computation-

84

ally expensive than our proposed interpolation technique. The extra computational

cost is due to the construction of the local sti�ness matrix. Besides the computation-

al cost, there will be either force discontinuity or displacement discontinuity between

extrapolation steps.

Currently our system is able to produce real-time graphics and haptics for a mesh

of several hundred vertices. We are experimenting with the relationship between the

sti�ness of soft objects and the maximum time delay that can be tolerated by human

operators. Our experience suggests that the softer the object is, the longer delay the

human operator can tolerate.

85

Chapter 6

Conclusion and Future Works

We presented a simulation system that simulates 3D global deformations in real-

time. Due to the distortion associated with linear strain, we simulate the global

deformation using geometrically nonlinear �nite element methods (Chapter 2). The

nonlinear FEM formulation is derived from the application of the nonlinear exact

strains. To solve such a nonlinear system in real-time, we apply Newmark scheme

and diagonalize the mass matrix to avoid matrix inversion (Chapter 3).

We implemented both statics and dynamics for elastic objects, using geometrically

nonlinear FEM with both hexahedral and tetrahedral meshes. On a 400MHz Pentium

II PC, a uniform mesh of 1331 elements needs about 0.11 seconds per time step. The

graded mesh with the same accuracy needs only 0.06 seconds per step.

In some sense this approach combines the best of the linear FEM model and mass-

spring model. A mass-spring model is inaccurate in its mathematical formulation,

86

however it is cheaper to solve because it is a diagonal system from the very beginning,

and it does not introduce any geometric distortion. Linear FEM model is more

accurate in its mathematical formulation of material behaviors, but expensive to solve

and has distortion for large motions and deformations. A diagonalized geometrically

nonlinear FEM approach models the material behavior with more accuracy than a

linear model and it is still cheap to solve and has no distortion.

We also introduced an eÆcient collision constraint (chapter 3.2). This constraint

enables us to simulate the collisions with little extra computation, compared to a

collision free simulation step. Our experiments show that this collision constraint

handles collision much more eÆcient than penalty method.

The geometrically nonlinear FEM model (Chapter 2) and collision-handling inte-

gration scheme (Chapter 3.2) apply to any types of meshes. Although we presented a

graded mesh in terms of a hexahedral mesh (Chapter 3.3), the asymptotic argument

applies to tetrahedral meshes as well. Indeed it becomes simpler with a tetrahedral

mesh because the issue of geometric compatibility at the element interface does not

arise.

The more subtle material properties, such as visco-elasticity, is usually reected

in the damping matrix and the computation of the internal forces. This makes the

diagonalization inappropriate for some applications, where it is essential to keep the

original damping matrix. However it is in general too expensive to solve the nonlinear

FEM system without diagonalization. In chapter 4, we presented an alternative

87

approach to achieve real-time performance. We pre-compute the LU-factorization of

a small number of large sparse matrices. Such preprocessing is possible because we

restrict the time steps to a small set of values. Our experiments show that usually

we only need no more than 3 di�erent values for time steps.

To reduce the time and space for LU-factorization and the time of back-substitution,

we apply nested dissection to reorder the vertices in the �nite element mesh. Such

a reordering does not change the physical model that we are simulating. But it

dramatically reduces the number of nonzeros in the LU-factorization.

We modi�ed the regular nested algorithm so that it works on un-structured �nite

element mesh. The modi�ed nested dissection (using the minimum vertex cover) has

a similar performance in terms of both time and space. However it is more general

than the regular nested dissection: it is able to handle any unstructured �nite element

mesh.

Out current implementation simply uses a cutting plan and seperate the mesh

using the minimum vertex cover of the corresponding bipartite connectivity graph.

Another alternative to a cutting plane is a topological sweep [8]. A topological sweep

may intersect a smaller set of elements than a cutting plane, which will in turn lead

to a smaller separator. We are currently studying this alternative algorithm.

In chapter 5, we have proposed a haptic simulation system that allows a human

operator to interact with 3D global deformations in real time.

Since a stable haptic display requires force computation at a much higher fre-

88

quency than that required by real-time graphics, we proposed a simple interpolation

technique by intentionally delaying the display (both graphic and haptic) by one full

simulation cycle. This takes advantage of the fact that human perception tolerates

a small delay of a few miliseconds. Such a delay turns a complicated extrapolation

into a simple interpolation.

Currently our system is able to produce real-time graphics and haptics for a mesh

of several hundred vertices. We are experimenting with the relationship between the

sti�ness of soft objects and the maximum time delay that can be tolerated by human

operators. Our experience suggests that the softer the object is, the longer delay the

human operator can tolerate.

Our current system only has geometric nonlinearity. In the future, in order to

simulate more realistic material behaviors, we are going to extend out system to

nonlinear material properties. However many of the techniques presented in this

thesis still apply.

89

Bibliography

[1] Y. Adachi, T. Kumano, and K. Ogino. Intermediate representation for sti� virtu-

al objects. Proceedings of IEEE Virtual Reality Annual International Symposium,

pages 203{210, 1995.

[2] David Bara�. Interactive simulation of solid rigid bodies. IEEE Computer Graph-

ics and Applications, 15:63{75, 1995.

[3] David Bara� and Andrew Witkin. Dynamic simulation of non-penetrating ex-

ible bodies. In Computer Graphics: Proceedings of SIGGRAPH, pages 303{308.

ACM, 1992.

[4] David Bara� and Andrew Witkin. Large steps in cloth simulation. In Computer

Graphics: Proceedings of SIGGRAPH, pages 303{308. ACM, 1998.

[5] David Chen. Pump It Up: Computer Animation of a Biomechanically Basded

Model of Muscle Using the Finite Element Method. PhD thesis, MIT, 1992.

90

[6] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction

to Algorithms. The MIT Press, 10 edition, 1993.

[7] St�ephane Cotin, Herv�e Delingette, and Nicholas Ayache. Real-time elastic defor-

mations of soft tissues for surgery simulation. IEEE Transcation on Visualization

and Computer Graphics, 5(1):62{73, January-March 1999.

[8] Herbert Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag,

1987.

[9] M. Finch, V. Chi, R. M. Taylor II, M. Falvo, S. Washburn, and R. Super�ne.

Surface modi�cation tools in a virtual environment interface to a scanning probe

microscope. Proceedings of 1995 Symposium on Interactive 3D Graphics, pages

13{18, April 1995.

[10] Y. C. Fung. A First Course In Continuum Mechanics. Prentice-Hall, Inc, 2nd

edition, 1977.

[11] Alan George. Nested dissection of a regular �nite element mesh. SIAM Jounal

of Numerical Analysis, 10(2), 1973.

[12] Alan George and Joseph W. H. Liu. A fast implementation of the minimum

degree algorithm using quotient graphs. ACM Transaction on Mathematical

Software, 6(3), September 1980.

91

[13] Alan George and Joseph W. H. Liu. Computer Solution of Large Sparse Positive

De�nite Systems. Prentice-Hall, Inc., 1981.

[14] Sarah F. Gibson and Brian Mirtich. A servey of deformable models in computer

graphics. Technical Report TR-97-19, Mitsubishi Electric Research Laboratories,

Cambridge, MA, November 1997.

[15] Phillip L. Gould. Introduction to Linear Elasticity. Springer-Verlag, 2nd edition,

1994.

[16] Frank Harary. Graph Theory. Addison-Wesley Publishing Company, 1972.

[17] D. J. Hebert. Symbolic local re�nement of tetrahedral grids. Jounral of Symbolic

Computation, 11, 1994.

[18] Doug L. James and Dinesh K. Pai. Artdefo: Accurate real time deformable

objects. Computer Graphics: Proceedings of Siggraph, pages 65{72, August 1999.

[19] George Karypis and Vipin Kumar. Metis: A software package for partitioning un-

structured graphs, partitioning meshes, and computing �ll-reducing orderings of

sparse matrices. Technical report, University of Minnesota, Department of Com-

puter Science / Army HPC Research Center, Minneapolis, MN 55455, November

1997.

[20] E. Keeve, S. Girod, P. Pfeie, and B. Girod. Anatomy-based facial tissue mod-

eling using the �nite element method. IEEE Visualization, 1996.

92

[21] Joseph W. H. Liu. Modi�cation of minimum-degree algorithm by multiple elem-

ination. ACM Transaction on Mathematical Software, 11(2), June 1985.

[22] W. R. Mark, S. C. Randolph, M. Finch, J. M. Van Verth, and R. M Taylor

II. Adding force feedback to graphics systems: Issues and solutions. Computer

Graphics: Proceeding of Siggraph, pages 447{452, August 1996.

[23] M. Minsky, M. Ouh-Young, M. Steele, F. P. Jr. Brooks, and M. Behensky. Feeling

and seeing: Issues in force display. Computer Graphics: Proceedings of 1990

Symposium on Interactive 3D Graphics, pages 235{243, 1990.

[24] G. Celniker nad G. Gossard. Deformable curve and surface �nite elements for

free form shage design. Computer Graphics, 25(4), 1991.

[25] Edward John Nicolson. Tactile Sensing and Control of a Planar Manipulator.

PhD thesis, EECS, University of California, Berkeley, 1987.

[26] M. Ouh-Young. Force Display in Molecular Docking. PhD thesis, UNC Chapel

Hill, Februry 1990.

[27] S. Peiper, J Rosen, and D. Zeltzer. Interactive graphics for plastic surgery: A

task-level analysis and implementation. In Symposium on Interactive 3D Graph-

ics, 1992.

[28] E. Promayon, P. Baconnier, and C. Puech. Physically-based deformations con-

strained in displacements and volume. In EUROGRAPHICS, 1996.

93

[29] X. Provot. Deformation constrains in a mass-spring model to describe rigid cloth

behavior. Computer Interface, 1995.

[30] J. N. Reddy. An Introduction to the Finite Element Method. McGraw-Hill, Inc.,

2nd edition, 1993.

[31] Diego Ruspini. Adding motion to constraint based haptic rendering systems:

Issues and solutions. Proceedings of the Second PHANToM User's Group Work-

shop, October 1997.

[32] Diego Ruspini and Oussama Khatib. Dynamic models for haptic rendering sys-

tems. Advances in Robot Kinematics, pages 523{532, June 1998.

[33] Diego C. Ruspini, Karsimir Kolarov, and Oussama Khatib. The haptic display

of complex graphical environments. Computer Graphics Proceedings, pages 345{

352, August 1997.

[34] Diego C. Ruspini, Krasimir Kolarov, and Oussama Khatib. Rubust haptic dis-

play of graphical environments. Proceedings of The First PHANToM User's

Group Workshop, September 1996.

[35] Diego C. Ruspini, Krasimir Kolarov, and Oussama Khatib. Haptic interaction

in virtual environments. The Proceedings of the International Conference on

Intelligent Robots and Systems, September 1997.

94

[36] Kenneth Salisbury. An overview of haptics research at mit's ai lab. Proceedings

of The First PHANToM User's Group Workshop, September 1996.

[37] M. A. Srinivasan and J. K. Salisbury. Chapter 4: Haptic interfaces. Virtual

Reality: Scienti�c Techonological Challenges, 1994.

[38] D. Terzopoulos and K. Fleischer. Modeling inelastic deformation: Viscoelasticity,

plasticity, fracture. Computer Graphics, 22, August 1988.

[39] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. Elastically deformable

models. Computer Graphics, 21, July 1987.

[40] D. Terzopoulos and K. Waters. Physically-based facial modeling, analysis and

animation. Journal of Visualization and Computer Animation, 1990.

[41] Sundar Vedula and David Bara�. Force feedback in interactive dynamic simula-

tion. Proceedings of The First PHANToM User's Group Workshop, September

1996.

[42] K. Waters. A muscle model for animating three-dimensional facial expression.

Computer Graphics, 21(4), July 1987.

[43] H. M. Westergaard. Theory of Elasticity and Plasticity. Dover Publications, Inc.,

1964.

[44] A. Witkin and et al . An introduction to physically based modeling. Course

Notes, 1993.

95

[45] M Yannakakis. Computing the minimum �ll-in is np-complete. SIAM Journal

of Algrbraic Discrete Methods, 2, 1981.

[46] Yan Zhuang and John Canny. Real-time simulation of physically realistic global

deformations. IEEE Visualization: Late Breaking Hot Topics, October 1999.

[47] Yan Zhuang and John Canny. Haptic interaction with global deformations. The

International Conference on Robotics and Automations, IEEE, April 2000.

[48] Yan Zhuang and John Canny. Real-time global deformations. The fourth Inter-

national Workshop on Algorithmic Foundations of Robotics, March 2000.

[49] O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method: Basic Formu-

lation and Linear Problems, volume 1. McGraw-Hill Book Company, 4th edition,

1989. linear �nite element method, linear elasticity.

[50] O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method: Solid and

Fluid Mechanics Dynamics and Non-Linearity, volume 2. McGraw-Hill Book

Company, 4th edition, 1989.

[51] C. B. Zilles and J. K. Salisbury. A constraint-based god-object method for hap-

tic display. ASME Haptic Interfaces for Virtual Environment and Teleoperator

Systems 1994, Dynamic Systems and Control, 1:146{150, November 1994.

