Proceedings of the 1996 IEEE
International Conference on Robotics and Automation
Minneapolis, Minnesota - April 1996

Estimating Pose Statistics for Robotic Part Feeders

Brian Mirtich*
UCB

John Craig® Rob Zanutta

Adept Technology, Inc.

Abstract

In automated assembly lines, part feeders often impose a
bottleneck that restricts throughput. To facilitate the design
of parts and assembly lines, we'd like to estimate feedrates
based on CAD models of parts. A previous paper [8] de-
scribed how to predict throughput for a vision-based robotic
part feeder given the distribution of part poses when parts
are randomly dropped on a conveyor belt. Estimating this
distributionis also useful for the design of traditional feeders
such as vibratory bowls.

In this paper, we describe three algorithms for estimat-
ing pose distributions. We review the quasi-static estimate
reported in [21] and introduce a refinement that takes into
account some measure of dynamic stability. The perturbed
quasi-static estimate can be computed very rapidly and is
more accurate than the quasi-static. Still more accurate
are estimates based on Monte Carlo simulation using Im-
pulse [12; 13], although the latter comes at the penalty of
increased computation time. We compare estimates from all
three algorithms with physical experiments. We believe this
is the first paper to systematically compare estimators with
experiments using real industrial parts.

1 Introduction

In contrast to fixed assembly lines, flexible assembly lines
can be rapidly reconfigured to handle new parts. This can
dramatically reduce the time needed to bring new prod-
ucts to market and permit the cost of assembly lines to be
amortized over multiple products. Part feeders, which sin-
gulate and orient the parts prior to packing and insertion,
are critical components of the assembly line and one of the
biggest obstacles to flexible assembly. Currently, the de-
sign of parts feeders is a black art that is responsible for

*Computer Science Department, University of Califor-
nia, Berkeley, CA 94720-1776, (510) 642-8149, mir-
tich@cs.berkeley.edu. Mirtich is supported in part by NSF grant
#FD93-19412.

fComputer Science Department, University of California,
Berkeley, CA 94720-1776, yzhuang @cs.berkeley.edu.

iDepartmem of Industrial Engineering and Operations Re-
search, University of California, Berkeley, CA 94720, gold-
berg@iris.usc.edu. Goldberg is supported by Adept Technology,
Inc. and a grant from the State of California’s Office of Competitive
Technology.

$ijc @silma.com

IComputer Science Department, University of Califomia,
Berkeley, CA 94720-1776, (510) 642-99535, jfc@cs.berkeley.edu.
Canny is supported in part by NSF grant #FD93-19412.

0-7803-2988-4/96 $4.00 © 1996 IEEE

Yan Zhuang!
UCB

Adept Technology, Inc.

Ken Goldberg?
UCB

John Canny"
UCB

Brian Carlisle
Adept Technology, Inc.

up to 30% of the cost and 50% of workcell failures [14;
2.

Carlisle et. al. [3] proposed a flexible part feeding system
that combines machine vision with a high-speed robot arm.
In contrast to custom-designed hardware such as the bowl
feeder, only software is changed when a new part is to be
fed. The idea is that a collection of like parts are randomly
scattered on a flat worktable where they are subject to the
force of gravity. An overhead vision system determines the
pose (position and orientation) of each part. The robot arm
then picks up each part and moves it into a desired final pose
as illustrated in Figure 1. To facilitate rapid programming,
we are developing a simulator that models feeder mechan-
ics. Goldberg et. al. [8] outline how feeder throughput can
be estimated based on estimates of pose statistics, conveyor
speed, and arm cycle time. In this paper we describe several
algorithms for estimating pose statistics.

Figure 1: A flexible parts feeder using machine vision, a
high-speed robot arm, and pivoting gripper. This illustration
shows the system feeding car-stereo pushbuttons.

An excellent introduction to mechanical parts feeders can
be found in [2], which describes vibratory bowl feeders in
detail as well as non-vibratory feeders such as the magnetic
andrevolving hook feeders. The authors note that the feedrate
for a parts feeder is related to the probability that parts are
aligned correctly when they encounter a mechanical filter and
give a quasi-static estimate for the orientation of rectangular
and cylindrical parts dropped at random.

Similarly, the throughput analysis in [8] requires knowl-

1140

edge about the distribution of poses, particularly orientation,
when the parts are scattered on the flat worktable. [21] gen-
eralized and improved on the Boothroyd estimate by treating
the convex hull of any polyhedral part and propagating prob-
ability from unstable faces. The resulting estimate is a good
first approximation to experimental distributions but do not
take into account effects such as bouncing, vibrations, colli-
sions, and friction. An ad-hoc estimator based on face area
and height of the cg was reported in [15] but only tested with
regularly-shaped parts.

In this paper, we examine the problem of estimating pose
distribution in greater detail. We first summarize the quasi-
static algorithm from [21]. Next we develop a refinement to
this algorithm which incorporates a simple model of dynamic
stability. Finally, we discuss results from full dynamic simu-
lation of dropped parts to obtain stochastic data. We discuss
impulse-based simulation, a paradigm that makes such simu-
lation possible in a reasonable amount of time, and present its
model for frictional collisions. All three algorithms for esti-
mating pose distributions are compared to real data for a vari-
ety of test parts; we find that dynamic simulation provides the
most accurate results, but requires significantly more compu-
tation time. The central problem is:

Estimating Pose Statistics (EPS) Fora rigid polyhedral part
X with known center of mass and inertia tensor, denote the
n faces of its convex hull H by Fy, ..., F,. Assuming X
is repeatedly dropped onto a flat surface from some known
distribution of initial poses, compute the values pi, ..., pn,
where p; is the probability that X reaches a final resting state
with F; down (against the surface).

In all three algorithms, we assume that the workspace is
flat and much larger than X, and that X does not collide with
other parts.

2 Quasi-static algorithm

Our first approach to the EPS problem was proposed by Wieg-
ley, et. al. The algorithm, presented in detail in [21], is
summarized here. Motion of the part is assumed to be quasi-
static; inertia and velocity are neglected.

After computing the part’s convex hull A, the idea is to
project the facets of H onto a unit sphere centered at the
center of mass c. If F; is the projection of face F, the ratio
of the area of F; to the total surface area of the sphere gives
the probability that the part will land on face F' under quasi-
static conditions, if its initial pose is uniformly distributed
over SO(3).

Assuming triangular faces, the ratio in question is given
by
_Bo+tbPi+P—m
- 4
where the §; are the interior angles of F; (see Figure 2).

The §; are computed as follows. Let do = dist(c, vo),
de1 = dist(e,v1), and do; = dist(vo, vi). Using standard
notation for triangles, let &, be the arc that results from pro-
jecting the line from vg to v; onto the sphere (note that arcs

A ¢Y]

1141

Figure 2: Computing initial probabilities for each face.

are measured by the angle subtended at the center of the
sphere). One can solve for 4, using the law of cosines,

gy = d2 + d% — 2dcod; cos 8,)

and ¢ and ¢; are found similarly. Given all the d;, 3, can be
found using the spherical law of cosines,

cos &, = cos &g cos §; + sindp sind; cos fa, 3)

and analogous computations give 5y and 3.

This procedure results in an initial estimate of each p;. To
treat faces of H that are statically unstable, we project the
center of mass onto the plane of each face F;. If the projected
pointlies outside face F;, gravity will cause the part to topple
over to adjacent face F}. In this case p; is added to p;, and
p; Is set to zero.

To facilitate this propagation, we define the quasi-static
graph (QSG) to be a directed graph in which each node
corresponds to one facet of the convex hull #. The QSG
has a directed link from node 7 to node j if and only if facet
F; topples to facet F; and they share one common edge.
Clearly, QSG is acyclic. We propagate probability along the
QSG using a breadth-first traverse. The algorithm is O(n?)
in the number of polyhedral edges [21].

3 Perturbed-Quasi-Static (PQS) Estimate

Since the quasi-static analysis does not model dynamic dis-
turbances, it often overestimates the probability of landing on
a facet that is stable but easily dislodged by small vibration.
In this section we describe a modification to the quasi-static
estimate that considers a “perturbation region” around each
edge of a stable face. Consider two facets of the part’s convex
hull, F; and F}, and the bounding edge e between them. Let
g be the downward vector from the part’s center of mass. In
the quasi-static estimate, we assume that if g intersects F;
when in contact, the part will remain on facet F;. However,

dynamic energy may cause the part to rotate across edge €
when g points inside facet F; but close to edge e (Figure 3).
The spherical projection of the perturbation region that falls
inside of the face yields a heuristic estimate of how likely
the part is to topple from F; to F; across their shared edge.
We call Ap;; the “perturbation probability” for each pair of
adjacent faces (each edge). We use these to compute a “per-
turbed quasi-static” (PQS) estimate that can be computed in
time O(n?) and agrees better with experiments.

Figure 3: Under the perturbed-quasi-static model, the part
remains on facet Fj, since g intersects F;. However dynamic
effects make it likely that the part will topple onto facet F;.
To model this, we consider a “perturbation region” around
the common edge using a cone of disturbance vectors.

We consider perturbations to the gravity vector that form
a right cone of half-angle ¢ with apex at the part’s center of
mass. The value of € depends on how far dynamic forces can
tilt the gravity vector; we used a value of 20° in the tables.
If we sweep the gravity vector g along the part edge e, the
perturbation cone sweeps out a perturbation region around
the edge.

To compute the perturbation probability, we consider the
triangle formed by edge e and two edges from its endpoints
to the projected center of mass on facet ;. Call this 7'
When we project T onto the unit sphere, we denote the arc
corresponding to e with . If we translate the plane defined by
the center of mass ¢ and the arc ¢ until it intersects the sphere
with a new arc a’ such that the spherical distance between
a’ and a is ¢, the spherical region X between «’ and a is the
spherical projection of the perturbation region (Figure 4(c)).

If we denote any point on the unit sphere by a vector
r = (z,y, z), which is parameterized by:

x = singcosf
y = sinpsind 4
zZ =Ccosp

then the area of X is:

o= [[1vte.0llde,)

1142

)
A

()

Figure 4: (a) Perturbations to the gravity vector form a cone.
(b) Perturbation region for one part edge. (c) Perturbation
probability for each edge, using the PQS model.

where Q is the corresponding region in terms of ¢ and 6, and
N(p, 6) is the fundamental vector product of the surface,
7, % Ty. As we cannot solve this integral in closed form, we
approximate the projected perturbation region by the area of
arectangle of length |a| and width e.

We transfer perturbation probability between adjacent
facets and then propagate down the QSG as in the quasi-
static estimate. We transfer Ap;; from facet F; to adjacent
facet F; if F; is unstable or if F; has a lower initial probability
under the quasi-static estimate. The first condition insures
that the perturbation probability will wind up at a stable facet
after propagating through the QSG. Both conditions reflect
the intuition that parts will tend to roll toward more stable
states. The only extra computation is finding the probabilities
of O(n?) perturbation regions and transferring the perturba-
tion probabilities. Therefore the PQS estimate has the same
time complexity as the quasi-static estimate: C(n?).

The PQS data in the tables are obtained by setting ¢ = 20°.
The computation time on SPARC20 is less than 1 second for
all 4 parts, among which about 90% of the computation time
is on the construction of the convex hull. It is important to
keep in mind that the PQS is a heuristic estimate. We do
not make any claims that this captures the intricate physics
of dynamic collisions. A better heuristic may be possible by
more sophisticated propagation of perturbation probabilities
which we are now exploring. A full treatment of dynamic
effects, at the price of increased computation, is described in
the next section.

4 Dynamic simulation

To obtain more accurate pose distribution predictions, one
could perform full dynamic simulations of the dropped part
over many trials. This seems prohibitive for two reasons.
First, the interaction between the part and environment is very
collision intensive, and it is notoriously difficult to model the
dynamics of collisions with friction [11]. Second, dynamic
simulation is much slower than the previous described pre-
diction algorithrus, and so obtaining a statistically significant
number of trials may take too long.

Mirtich and Canny have studied impulse-based simula-
tion, a paradigm for dynamic simulation that addresses these
problems. The method handles frictional collisions in a nat-
ural way, and for general 3D rigid body simulation, the sim-
ulator Impulse has the fastest execution times reported in the
literature [13].

4.1 Computing frictional collisions

Details about Impulse, and a comparison of constraint- and
impulse-based simulation are in [12; 13]. In the latter
paradigm, all interactions between simulated bodies are af-
fected through frictional collisions, thus a good collision
model is crucial to physical accuracy. Our model is simi-
lar to that of Routh [17], although we derive equations which
are more amenable to numerical integration. Keller also gives
an excellent treatment [9], and Bhatt and Koechling give a
classification of frictional collisions, based on the flow pat-
terns of tangential contact velocity [1]. Finally, Wang and
Mason have studied two-dimensional impact dynamics for
robotic applications, based on Routh’s approach [20].

Consider two rigid bodies coming into contact as shown in
Figure 5. Each body 7 has a known mass m;, inertia tensor

Figure 5: A collision between two rigid bodies.

J:, linear center of mass velocity v;, and an angular velocity
w;. If r; is the offset vector of the contact point relative to
body i’s center of mass, then the absolute velocity u; of the
contact point on body ¢ is given by

W =Vitwi X 6)

and therelative contact velocity u at the contact pointis given
by
u=u —u (7)

Under the coordinate system in Figure 5, the objects are
colliding if if u has negative z (i.e. normal) component. In
this case, a pair of collision impulses (p and —p) must be
applied to prevent interpenetration; the goal is to compute
p. We assume: infinitesimal collision time, the Coulomb
friction model, and Poisson’s hypothesis for restitution.

Infinitesimal collision time implies the positions of the two
bodies may be treated as constant during the collision. Since
p is an impulsive force, the velocities of the bodies change
during the course of the collision. Because the frictional
forces depend on the relative sliding velocity, the velocity
profile during the collision must be analyzed.

Let -y denote a collision parameter which starts at 0 and
increases monotonically during the collision. All body ve-
locities as well as the relative velocity at the contact point are
functions of 7. Let p(7) be the total impulse imparted up to
point v in the collision. From basic physics,

1
Avi(y) = Ep(v) 8)
Awi(y) = I [rxp(y)].)
Applying (6) gives
1
Auy = [—nal - m;‘m] p(7) (10)

where I is the 3 x 3 identity matrix and #; is the canonical
skew-symmetric matrix corresponding to r;. Computing Au,
analogously (—p is used instead of p), and applying (7) gives

Au = [(L + L) LN FzJ;‘Fz] p(v) (D

my my

~~

K

The 3 x 3 matrix K is symmetric. More importantly, the
infinitesimal collision time assumption implies r; and J; are
constant during a collision, hence K is also constant. We can
differentiate (11) with respect to -y, obtaining

u = Kp’ (12)

4.1.1 Sliding mode

While the tangential component of u is nonzero, the bod-
ies are sliding relative to each other, and p’ is completely
constrained. Let 6(v) be the relative direction of sliding dur-
ing the collision, that is § = arg(u, + iuy). Also choose
7 to be p,, the accumulated normal component of impulse.
Under Coulomb friction, one finds that

—pcosd

p = [—psin @] (13)
1

Expressing the right hand side of (13) in terms of u and
substituting into (12) gives

_p i)

— Uu
=K | -p (14)
1

e & &
NS@~ y>

This nonlinear differential equation for u is valid as long as
the bodies are sliding relative to each other. By integrating the
equation with respect to the collision parameter v (i.e. p.),
one can track u during the course of the collision. Projections
of the trajectories into the u.-uy plane are shown in Figure 6
for a particular K.

1143

Relative Sliding (Tangential) Velocity During impact

y velocity
g o

x velocity

Figure 6: Trajectories of the the tangential components of the
system (14) for a particular K. The crosses indicate different
initial sliding velocities.

The basic impulse calculation algorithm proceeds as fol-
lows. After computing the initial u and verifying that u,
is negative, u is numerically integrated using (14) (p. is
the independent variable). During integration, u, increases,
reaching zero at the point of maximum compression. At this
point, p, is the normal impulse applied during compression,
and multiplying it by (1 + €) gives its terminating value, by
Poisson’s hypothesis for restitution. The integration contin-
ues to the terminating value, and p is recovered by inverting

(11).
4.1.2 Sticking mode

Sticking occurs if the relative tangential velocity ever van-
ishes during integration of (14). In this case, Coulomb fric-
tion requires that the frictional force lie within the friction
cone, althoughits direction is not specified. When sticking is
detected, the system first checks whether it is a stable sticking
conditionby settingu = (0,0, A) in(12), and solving forp’.
One can choose A such that p’ is of the form p’ = («, 3,)T,
If

o’ + 6% < p, (15)
a frictional force lying within the friction cone can maintain
sticking, and so uy = uy = Oand p’ = (o, 8,1)7 for the
duration of the collision.

If o? + 8% > p?, the friction is not sufficient to maintain
sticking, and sliding immediately resumes in a direction 8, of
the ray emanating from the origin in the tangential velocity
plot (In Figure 6, 6. ~ 45°). This ray always exists and is
unique in cases of instable sticking.

4.2 Additional dynamic considerations

For dynamic simulation, many parameters not used quasi-
static and perturbed quasi-static algorithms are important.

1144

Figure 7: Top: CAD models of the four parts used in the
experiments. From left to right: insulator cap, large white,
rectangular black, and square black stereo buttons. Bottom:
Photographs of the rectangular black stereo button in its
seven stable states.

The coefficients of friction and restitution were both esti-
mated to be 0.3.! The feeder configuration is also important.
Adept’s flexible feeder system dumps part from an upper belt
onto a lower belt, where the parts are examined by the vision
system, and then picked and placed by one or more manip-
ulators. For dynamic simulation, the height of the drop was
estimated at 12.0 cm. The horizontal velocity of the parts as
they leave the upper belt was estimated at 5.0 cm/s.

The initial orientation of the parts poses a problem since
the parts are in a stable resting state on the upper belt, before
being dropped onto the lower one. Thus, the initial distri-
bution of orientation is not uniform, but similar to the final
(initially unknown) distribution. To circumvent this prob-
lem, the initial orientations for the first 20 drops are chosen
randomly, assuming a uniform distribution over SO(3). This
bootstraps the process with a preliminary final pose distribu-
tion. For all remaining drops, the initial (upper belt) poses
are chosen from the current distribution of final (lower belt)
poses, so that the results of the drop tests are continually fed
back to determine initial conditions. A slight perturbation (a
rotation of up to 1.5 degrees about a randomly chosen axis)
is also applied to the initial pose to introduce noise into the
system due to belt vibration.

5 Experimental results

All of the algorithms described in this paper were applied to
four test parts. The test parts were all small, plastic, rigid
pieces, of the type typically used in automated assembly
(Figure 7). Part #1 is an insulator cap purchased at a local
hardware store. Parts #2, #3, and #4 are pushbuttons designed
for a commercial car stereo system. Geometric models of
each part were constructed by measuring the parts with aruler.
Centers of mass and moments of inertia for the parts were
computed automatically by Impulse. As a control, physical
experiments were performed by repeatedly running several
samples of each test part through Adept’s flexible feeder
system (Figure 1); the final resting poses were recorded by

'Recently, Issa Nessnas of Adept has experimentally measured
these coefficients; we plan to perform more tests using his numbers.

a human observer. Tables 1 through 4 show the results. All Quasi- P’turbed | Dynamic | Physical
quantities in the tables are percentages. Pose Static Q-3 Sim. Tests*
The error percentages included in the tables indicate the 1 35.7 46.6 684 62.2
overall performance of each algorithm for each sample part. 2 17.5 15.5 16.6 152
They are computed as the average deviation of the algorithm’s 3 12.1 17.0 6.1 11.0
predictions from the physical test percentage, weighted by 4 7.2 8.6 6.0 4.7
the frequency with which that state actually occurs. Let 5 39 L6 2.7 31
p1,...,pn Tepresent the probability of each of n states, as 6 5.6 1.5 0.0 2.8
measured in the physical test. Let ay,...,a, represent the 7 3.8 39 03 0.5
corresponding probabilities computed by one of the algo- 8 4.2 1.7 0.0 0.0
rithms. The error percentage for that algorithm is given by 9 3.0 23 0.0 0.0
n 10 2.6 0.7 0.0 0.0
— N — b 11 22 0.0 0.0 0.0
e =100 ; pi |ai — pil. (16) 12 2.1 0.5 0.0 0.0
error 17.2 10.7 4.8 -
Quasi- P’turbed | Dynamic | Physical 2915 trials
Pose Static Q-3 Sim. Tests®
1 30.5 46.5 41.9 46.0 Table 4: Square black stereo button data.
2 37.3 30.2 26.2 27.1
i lg 36 1:? 2 2§ g 1593 for parts with 50 facets. Dynamic simulation is slower; for
5 49 0.0 08 29 each part, 2000 drops were simulated, t.akmg approximately
two hours per part. The data presented in Tables 1 through 4
error 10.1 12 4.0 - bring out several interesting points concerning the accuracy
%1036 mals of the algorithms’ predictions.
. The perturbed quasi-static algorithm’s predictions are con-
Table 1: Orange insulator cap data. sistently more accurate than those of the quasi-static algo-
rithm, and the added computation time is negligible. Hence,
r Quasi- Pturbed | Dynamic | Physical the perturbed.quas@—static algorithm should always be chosen
Pose Static Q-S Sim. Tests? over the quasi-static one.
1 34.5 48.8 71.7 75.8 The dynamic simulation algorithm is the most accurate for
2 399 30.6 20.9 13.8 all sample parts, except the insulator cap (Table 1), for which
3 192 20.5 74 10.5 the perturbed quasi-static algorithm slightly outperforms it.
4 6.3 0.0 0.1 0.0 The dynamic simulation algorithm’s prediction accuracy is
error 35.8 738 44 — also the most consistent; the composite error is less than 5%
in all cases. Nonetheless, a penalty of three to four orders
“545 trials of magnitude in execution time must be paid for this added
accuracy; whether this is appropriate or not depends on the
Table 2: White stereo button data. situation.
In an interactive setting, where a designer is perhaps edit-
Quasi- P'turbed | Dynamic | Physical ing the CAD model of a part in order to improve feeder
Pose Static Q-S Sim. Tests® throughput, the perturbed quasi-static algorithm is clearly
1 36.2 47.3 54.1 56.0 the best choice. The designer need only wait seconds to see
2 16.0 25.5 24.1 24.5 how changing a part’s CAD model] alters the pose distribution
3 174 17.0 14.0 13.6 and feeder throughput.
4 8.1 1.2 1.4 44 The dynamic simulation algorithm i ful for obtaini
s 106 45 53 14 y ' gorithm is useful for obtaining
6 75 44 10 03 a more accurate estimate once the design has been deter-
: : : ’ mined, or for analyzing the effects of more subtle design
7 4.3 0.0 0.3 0.0 changes. It models several factors, that aren’t considered by
i) 14.0 58 1.4 - the standard and perturbed quasi-static algorithms, includ-
21099 wials ing: friction, collisions with energy loss, mass moments of

5.1 Discussion

The quasi-static and perturbed quasi-static algorithms are ex-
tremely fast, requiring less than a second of computation time

1145

Table 3: Rectangular black stereo button data.

inertia, height of drop, and initial conditions of the part prior
to drop. To study the effects of varying these parameters,
dynamic simulation is appropriate.

Our simulation experiments involved 2000 drops tests.
Often, fewer trials may be sufficient, reducing the compu-
tational cost of this method. Suppose the true (unknown)
probability that a part lands in a particular pose is p. The

number of times the part lands in this pose over n trials is a
binomial random variable, which may often be approximated
by a normal distribution®. A confidence interval statement
is of the form: “p lies within the range (1 — §, 4 + &), with
100(1 — a)% certainty.” Here, u is the probability estimate
obtained from the n trials, § is the allowable error tolerance,
and o is the level of the statistical test. Given d and «, one
can bound the number of trials necessary by

_o'(1-9)
T B
where ®@(z) is the cumulative normal distribution function.
For example, to pinpoint the probability of a particular final
pose to within 5%, with 90% certainty, 6 = 0.05 and o =

0.10. From (17), 385 trials are sufficient. See [5] for more
information.

a7

6 Summary

Predicting the pose distribution of rigid parts dropped onto
a flat surface is important in evaluating part designs for as-
sembly. These distributions are necessary to estimate feeder
throughput, which can then be used to determine how many
robots and assembly lines are required to meet specified pro-
duction rates. This can greatly reduce the time required to
set-up or changeover automated factories and hence allow
new products to be more rapidly brought to market.

We have presented three algorithms for predicting the pose
distributions of rigid parts dropped onto a flat surface. We
have compared the predictions from these algorithms to phys-
ical test results, and believe that this is the first systematic
comparison of pose estimators with experiments using real
industrial parts.

Our results indicate that a perturbed quasi-static algorithm,
based on a refinement of the quasi-static algorithm presented
in [21], produces significantly more accurate results, with
negligible added computation time. The perturbed quasi-
static algorithm certainly has the highest accuracy to exe-
cution time ratio of all three algorithms studied. The third
algorithm, based on dynamic simulation of the dropped parts
using the simulator Impulse, generally gives the most accurate
predictions, with averaged errors under 5% for all four test
parts. This algorithm can also be used to study sensitivities to
parameters not modeled by the other algorithms, such as the
coefficient of friction or the initial part velocity. However,
this algorithm takes one to two hours to generate predictions,
as opposed to under a second required by the standard and
perturbed quasi-static algorithms. In an interactive setting,
the quasi-static algorithm is the method of choice, providing
reasonably good predictions very quickly. The dynamic sim-
ulation algorithm might find application later in the design
cycle, where more careful analysis is required.

This work in estimating pose statistics complements other
ongoing work in automated assembly. Rao, Kriegman, and
Goldberg have studied the use of a pivoting gripper for

A common rule of thumb is that the normal approximation is
valid if the numbers of successes and failures during the trial series
both exceed five [5].

Adept’s flexible feeder; they give an O(m?n log n) algorithm
to generate pivot grasps for a part with n faces and m sta-
ble configurations [16]. Christiansen, Edwards, and Coello
Coello give a genetic algorithm for designing efficient part
feeders from component gates [4]. Their algorithm takes
pose statistics such as the ones we compute as input.

Acknowledgments. Versions of the quasi-static algorithm
were implemented at USC: Wiegley in 1992, Zheng Yeh in
1993, and Yan Zhuang in 1994. The convex hull routine used
in our current implementation is due to Ioannis Emiris and
John Canny. Thanks to Randy Brost and Bruce Shimano for
useful feedback on the initial draft of this paper.

References

{1] Vivek Bhatt and Jeff Koechling. Classifying dynamic behavior during three
dimensional frictional rigid body impact. In International Conference on Robotics
and Automation. IEEE, May 1994.

[2] Geoffrey Boothroyd, Corrado Poli, and Laurence E. Murch. Automatic Assembly.
Marcel Dekker, Inc., 1982.

[3] Brian Carlisle, Ken Goldberg, Anil Rao, and Jeff Wiegley. A pivoting gripper for
feeding industrial parts. In International Conference on Robotics and Automation.
IEEE, May 1994. Also available as USC Techreport IRIS-93-316.

[4] Alan D. Christiansen, Andrea Dunham Edwards, and Carlos A. Coello Coello.
Automated design of part feeders using a genetic algorithm. In International
Conference on Robotics and Automation. IEEE, 1996.

[5]1 Jay L. Devore. Probability & Statistics for Engineering and the Sciences.
Brooks/Cole Publishing Company, Monterey, California, 1982.

[6] Peter Dewhurst. Design for robotic assembly. Manufacturing Engineering, June
1991.

[7] Gregory T. Farnum and Bill Davis. Delivering the part. Manufacturing Engi-
neering, March 1986.

[8] Ken Goldberg and John Craig. Estimating throughput for a flexible part feeder:
Simulation and experiments. In International Symposium of Experimental
Robotics. Stanford University, June 1995.

[91 1. B. Keller. Impact with friction. Journal of Applied Mechanics, 53, March
1986.

[10] David J. Kriegman. Let them fall where they may: Capture regions of curved
objects and polyhedra. Technical Report 9508, Yale University, June 1995.

[11] Matthew T. Mason, Ken Goldberg, and Yu Wang. Progress in robotic manipu-
lation. In 15th Grantees Conference on Production Research and Technology.
National Science Foundation, January 1989.

[12] Brian Mirtich and John Canny. Impulse-based dynamic simulation. In K. Gold-
berg, D. Halperin, J.C. Latombe, and R. Wilson, editors, The Algorithmic Foun-
dations of Robotics. A. K. Peters, Boston, MA, 1995. Proceedings from the
workshop held in February, 1994.

{13] Brian Mirtich and John Canny. Impulse-based simulation of rigid bodies. In
Symposium on Interactive 3D Graphics, New York, 1995. ACM Press.

[14] James L. Nevins and Daniel E. Whitney. Computer-controlled assembly. Scien-
tific American, 1978.

{151 B. K. A. Ngoi, L. E. N. Lim, and S. S. G. Lee. Analyzing the probabilities of
natural resting for a component with a virtual resting face. ASME Journal of
Engineering for Industry, (to appear), 1995.

{161 A. Rao, D. Kriegman, and K. Goldberg. Complete algorithms for reorienting
polyhedral parts using a pivoting gripper. In International Conference on Robotics
and Automation. IEEE, May 1995.

[17] EdwardJ. Routh. Elementary Rigid Dynamics. Macmillan, London, 1905.
[18} Berhard J. Schroer. Electronic parts presentation using vibratory bowl feeders.
Robotics, 3, 1987.

[19] Neil C. Singer. Utilizing dynamic and static stability to orient parts. Master’s
thesis, MIT, 1985,

[20] Yu Wang and Matthew T. Mason. Modeling impact dynamics for robotic opera-
tons. In International Conference on Robotics and Automation, pages 678-685.
JEEE, May 1987.

Jeff Wiegley, Anil Rao, and Ken Goldberg. Computing a statistical distribu-
tion of stable poses for a polyhedron. In 30th Annual Allerton Conference on
Communications, Control, and Computing, 1992.

(21

1146

