Fast Contact Determination in Dynamic Environments

Ming C. Lin*
Univ. of Calif., Berkeley

Abstract

We present an efficient contact determination algorithm
for objects undergoing rigid motion. The environment con-
sists of polytopes and models described by algebraic sets.
We extend an ezpected constant time collision detection
algorithm between convez polytopes to concave polytopes
and curved models. The algorithm makes use of hierarchi-
cal representations for concave polytopes and local, global
methods for solving polynomial equations to determine pos-
sible contact points. We also propose techniques to reduce
O(n?) pairwise intersection tests for a large environment
of n objects. These algorithms work well in practice and
give real time performance for most environments.

1 Introduction

An essential component of robot motion planning and
collision avoidance is a geometric reasoning system which
can detect potential contacts and determine the exact col-
lision points between the robot manipulator and the obsta-
cles in the workspace. Although it doesn’t provide a com-
plete solution to the path planning and obstacle avoidance
problems, it often serves as a good indicator to steer the
robot away from its surrounding before an actual collision
occurs.

The problems of contact determination or interference
detection between two or more objects has been exten-
sively studied in robotics and computational geometry
{4, 5, 6, 8, 14, 20, 22, 23). Besides these areas, it has a
received a lot of attention in computer animation, molecu-
lar modeling and computer simulated environments as well
[1, 2].

In this paper, we present an efficient algorithm for inter-
ference detection between polyhedral and curved objects
undergoing rigid motion. The algorithm makes use of spa-
tial and temporal coherence between successive instances
and no assumption is made on the motion of the object to
be expressed as a closed form function of time. The coher-
ence is based on local features of the polytopes and alge-
braic formulation of contact determination between curved
models. For a large environment of n objects, we present
techniques to reduce the O(n?) pairwise detections as well.

*Currently an assist. prof. at Naval Postgraduate School.

tSupported in part by Junior Faculty Award and by DARPA
Cont. # DAEA-18-90-C-0044.

1Supported in part by David and Lucile Packard Fellowship
and National Science Foundation Presidential Young Investiga-
tor Award (# IRI-8958577).

1050-4729/94 $03.00 © 1994 IEEE

Dinesh Manocha'
Univ. of No. Carolina, Chapel Hill

602

John Canny?
Univ. of Calif., Berkeley

These algorithms have not been unsuccessfully applied to
any test environment and they give a real time perfor-
mance in most cases.

1.1 Previous Work

Most of the earlier work in robotics and computational
geometry has focussed on collision detection between con-
vex polytopes. Algorithms in computational geometry use
properties of convex sets and reduce the problem to lin-
ear programming. Good theoretical and practical algo-
rithms based on linear complexity of the linear program-
ming problem in fixed dimension are known as well [25, 28].
Algorithms with expected linear time performance are also
given in [14] to compute the distance between convex poly-
topes and keep track of closest features. Using hierarchical
representations, an O(log®n) algorithm is given in [8] for
polyhedron-polyhedron intersection problem, where n is
the number of vertices. As for curved objects, many algo-
rithms are presented for models whose trajectory can be
expressed as a closed form function of time {10, 17, 30].
They make use of subdivision methods or interval arith-
metic, bounds on derivatives and constrained minimiza-
tion. However, they are fairly slow in practice and not
applicable for most robotics environments.

In applications involving rigid motion, geometric coher-
ence has been utilized to devise algorithms for convex poly-
hedra based on local features [1, 22, 21]. Local properties
have been used in the earlier motion planning algorithms
by [9, 23] when two objects come into contact. These al-
gorithms utilize the spatial and temporal coherence be-
tween successive instances and work well in practice. Most
environments consists of multiple objects and performing
O(n?) pairwise interference detection becomes a bottle-
neck for large n. Algorithms of complexity O(nlog?n +m)
have been presented for spheres in [19] and rectangular
bounding boxes in [11], where m corresponds to the num-
ber of overlaps. Overmars has shown that using a hash
table to look up an enetry, we can use a data structure of
O(n) storage space to perform the point location queries
in constant time [27).

1.2 Organization

The rest of the paper is organized in the following man-
ner. In Section 2 we review literature on object models
and solving polynomial equations. Section 3 highlights
the constant time algorithm by Lin and Canny (details
can be found in [22, 21]) for convex polytopes and its ex-
tension to concave objects. In Section 4, we analyze the

problem of contact determination between spline surfaces
and algebraic models. In Section 5, we use local methods
of solving equations along with polyhedral approximations
to convex curved models for collision detection. Concave
surfaces are handled using polyhedral bounding boxes, lo-
cal and global methods for solving polynomial systems.
A scheduling scheme and a hybrid algorithm to overcome
the O(n?) bottleneck for large environments is presented in
Section 6. Finally, in Section 7 we discuss the performance
and implementation of the algorithm to various environ-
ments.

2 Background
2.1 Object Models

Most of the earlier robotics simulation systems have
benn restricted to polyhedral models. However, model-
ing with surfaces bounded by linear boundaries poses a
serious restriction in these systems. Model descriptions of
common robots like the PUMA consist of quadric surfaces
like cylinders and hemi-spheres. In this paper, robot mod-
els and environments are described in terms of algebraic
sets. Mathematically, algebraic sets correspond to zeros
of a system of polynomial equations. Besides polyhedral
models, they include quadric surfaces, NURBS represen-
tations (Bézier and B-spline patches) used in geometric
and solid modeling [18] and combinations of these models
using Constructive Solid Geometry (CSG) operations. In
particular, we assume that each object in the environment
is represented in terms of polynomial equations.

The surfaces can be described using parametric or im-
plicit representations. In particular, a parametric repre-
sentation of a surface in homogeneous coordinates is :

F(s,t) = (X(s,1),Y(s,1), Z(s,1), W(s,1)). (1)

Algebraic surfaces are represented as f(z,y, z) = 0, where
f(z,y, z) is a polynomial function. Typically, models con-
sist of piecewise parametric or piecewise algebraic descrip-
tions, where we associate a suitable domain with represen-
tation.

2.2 Motion Description

All objects are defined with respect to a global coordi-
nate system, the world frame. The initial configuration is
specified in terms of the world frame system. As the ob-
jects undergo rigid motion, we update their positions using
a 4 x 4 homogeneous transformation matrix, M, used to
represent the rotation as well as translational components
of the motion (with respect to the origin). The algorithm is
based only on local features of the polyhedra (or bounding
polytope representations of curved models) and does not
require the position of every feature to be updated for the
purpose of contact determination at every time instant.

3 Collision Detection for Polyhedra

In this section, we briefly review the simple and efficient
collision detection algorithm for convex polyhedra. More

603

details are given in [22, 21]. The algorithms proceeds by
tracking the pair of closest features (vertex, edge, or face)
between the two convex polyhedra. Based on the closest
feature pair it is able to calculate the Euclidean distance
between them to detect possible collision. The method
is applicable in static environments, but is especially well
suited to dynamic domains as the objects move in a se-
quence of small, discrete steps. We take advantage of the
empirical fact that the closest features change infrequently
as the objects move along finely discretized paths. By pre-
processing the polyhedra, the algorithm runs in roughly
constant time if the objects are not moving very swiftly.
Even when the closest feature pair is changing rapidly, the
algorithm takes only slightly longer (run time is propor-
tional to the number of feature pairs traversed).

3.1 Algorithm Overview

The algorithm is straightforward in its conception. We
start with a candidate pair of features, one from each poly-
hedra, and check whether the closest points lie on these
features. Since the objects are convex and regular, this is
a local test involving only the boundary and coboundary of
the candidate features. If the features fail the test, we step
to a neighboring feature of one or both candidates, and try
again. With some simple preprocessing, we can guarantee
that every feature has a boundary and coboundary of con-
stant size. As a result, we are able to verify the closest
feature pair in constant time.

When a pair of features fails the test, the new pair we
choose is guaranteed to be closer than the old one. So when
the objects move and one of the closest features changes,
we usually find it after one or two iterations. Even if the
closest features are changing rapidly, say once per step
along the path, our algorithm takes only slightly longer.
In this case, the running time is proportional to the num-
ber of feature pairs traversed in this process. It is not
more than the product of the numbers of features of the
two polyhedra, because the Euclidean distance between
feature pairs must always decrease when a switch is made.
This algorithm outputs the pair of closest features (and
closest points), and also the distance between two objects.
If the distance is less than or equal to zero (plus é - a small
safety margin defined by user or determined by a given en-
vironment), then the objects interpenetrate or just touch.

3.2 Hierarchical Representation for Concave Ob-
jects

We extend the almost constant time algorithm for con-
vex polyhedra to concave objects using hierarchical repre-
sentation. We assume that each nonconvex object is repre-
sented as a union of convex pieces or composed of several
nonconvex subparts, each of these can be further repre-
sented as a union of convex subparts or a union of concave
pieces. We use a sub-part hierarchy tree to represent each
nonconvex object (including curved objects which will be
discussed later). At each node of the tree, we store either
a convex sub-part or the union of several convex subparts.
The algorithm computes the convex hull for each leaf and

|
dn vk B
/AN
a)} o :

Figtl_xre 1: A hierarchical tree representation of an air-
craft

work up the tree as part of preprocessing computation. We
also include the convex hull of the union of sub-parts in the
data structure. The convex hull of each node is the con-
vex hull of the union of the the convex hulls of its children
(as in Figure 3.2). For instance, The root of this sub-part
hierarchy tree is the nonconvex object with its convex hull
in its data structure.

At each time step, we examine the possible interference
using a recursive technique. The algorithm first checks for
collision between two parent convex hulls. In case there is
no interference between two parents, there is no collision
and the algorithm stops and returns the closest feature
pair between two convex hulls of the objects. If there is an
overlap between the convex hulls, the algorithm traverses
to their children. This process is repeated as long as the
convex hulls at the intermediate nodes are overlapping.
Final a collision among the leaf nodes implies a collision
between the original models.

For complex objects, using a deep hierarchy tree with
lower branching factor will keep down the number of nodes
which need to be expanded. This approach guarantees that
we find the earliest collision between two concave objects.

4 Contact Determination
Curved Surfaces

between

In this section, we analyze the problem of contact deter-
mination between curved objects represented as piecewise
parametric surfaces or piecewise algebraic models.

In general, given two rational parametric or algebraic
surfaces, there is no good and quick solution to find out
whether there is an actual contact between the two sur-
faces. The simplest solution is based on the use of bound-
ing polytopes for each model. The bounding polytopes
may correspond to rectangular bounding boxes or control
polytopes associated with the NURBS surfaces [18]. How-
ever, bounding polytopes are useful for performing a rejec-
tion test only. In case the two bounding polytopes overlap,
they can be further subdivided using a octree representa-
tions or subdivision algorithms for NURBS surfaces. In
case, there is an actual contact between the two curved
models, this approach based on subdivision converges lin-

604

Tangent Plane Boundary Point

(b)

{a)

Figure 2: Tangential intersection and boundary inter-
section between two parametric surfaces

early to the solution and can be slow in practice. We
reduce these problems to finding solutions of a system of
algebraic equations. In particular, we present algebraic for-
mulations for the computation of closest features between
curved models.

4.1 Closest Features

Given the homogeneous representation of two paramet-
ric surfaces, F(s,t) = (X (s,1), Y(s,1), Z(s,t), W(s, 1)) and
G(u,v) = (X(,v), Y(u,v), Z(x,v), W(u,v)), the closest
features correspond to points or curves on the surface. The
closest features are characterized by the property that the

corresponding surface normals are collinear. This can be
expressed in terms of the following variables.

Hi(s,t,u,v) = (F(s,t) — G(u,v)) ¢ Gu(u,v) =0
H2(s, t,u,v) = (F(s,t) — G(u,v)) e Gy(n,v) =0
Ha(s,t,u,v) = (F(s,t) — G(u,v)) e F (s,t) =0
Hi(s,t,u,v) = (F(s,t) — G(u,v)) e Fi(s,2) = 0,

(2)

where F,, F;, Gy, G, correspond to the partial derivatives
and e corresponds to the dot product. This results in 4
equations in 4 unknowns. However, we are only interested
in the solutions in the domain of interest (since each surface
is defined on a subset of the real plane).

Similarly the problem of finding closest features of al-
gebraic surfaces, f(z,y,2) = 0 and g(z,y,2) = 0, can be
reduced to finding roots of the following system of 6 alge-

braic equations:
0
fs(z1,91,21)

(2)-(%) - =

These sets of equations can have high algebraic complexity.
Even for surfaces of degree as low as three, finding all the
solutions to these equations in the suitable domain can
take order of a few minutes. Local optimization need good
initial guess to all the possible closest pair features. For

f(z1,01,21)
9(z2, y2, 22)

fe(z1, 0, 21)
fy(z1, 1, 21)

]

(3)
9x(%2,¥2, 22))

gy(z2, 92, 22)
92(22, 2, 22)

gx(x2,2, 22))

9y(22, 92, 22)
9:(22,92, 22)

1

concave curved models there are typically more than one
closest features pair and finding all of them using local
optimizations method is fairly non-trivial.

4.2 Contact Formulation

We now formulate the algebraic constraints for a point
contact between two curved models. Given two objects
moving towards each other, they collide whenever these
equations are simultaneously satisfied. The contact can
be characterized as either a tangential intersection or a
boundary intersection.

o Tangential Intersection : This corresponds to a tan-
gential intersection between the two surfaces at a ge-
ometric contact point, as in Figure 2(a). At the con-
tact point the normal vectors to the two surfaces are
collinear. For parametric surfaces, these constraints
can be formulated as:

F(s,t) = G(u,v)
(Fs(s,t) x Fe(s, 1)) ¢ Gu(u,v) =0
(Fa(s,t) x Fe(s,t)) e Gofu,v) =0

4)

The first vector equation corresponds to a contact
between the two surfaces and the last two equations
_represent the fact that their normals are collinear.
They are expressed as scalar triple product of the vec-
tor The last vector equation represented in terms of
cross product corresponds to three scalar equations.
We obtain 5 equations in 4 unknowns. This is an over-
constrained system and typically such equations have
no common solution. A tangential contact between
the original models implies a common solutions to all
these equations. To check for a tangential contact,
we compute all the solutions to the first four equa-
tions using resultants [24] and substitute them into
the fifth equation.
Similarly for two algebraic surfaces, the problem of
tangential intersection can be formulated as:

f v(xv Y, 2)

f(z,9,2) =0
(f(z,9,2)) =a(

9(z,y,2) =0

9= (I 'Y, 2)

9v(z,9,2)
9:(z,9,2)

In this case, we obtain 4 equations in 3 unknowns

(after eliminating a) and these equations correspond

to an overconstrained system as well.

()
fx(‘cv Y, z)

o Boundary Intersection : Such intersections lie on the
boundary curve of one of the two surfaces. Say we
are given a Bézier surface, defined over the domain,
(s,t) € [0,1] x [0,1], we obtain the boundary curves
by substituting s or ¢ to be 0 or 1. The resulting
problem reduces to solving the equations:

F(s,1) = G(u,v) (6)

605

Other possible boundary intersections can be com-
puted in a similar manner. An example has been
shown in Figure 2(b)

Two objects collide if one of these sets of equations,
((4) or (6)) for parametric surfaces and (5) for algebraic
surfaces, have a common solution in their domain.

In a few degenerate cases, it is possible that the system
of equations (4) or (5) and (6) have an infinite number of
solutions. One such example is two cylinders parallel to
each other. In this case the geometric contact corresponds
to a curve on each surface, as opposed to a point. These
cases can be detected using resultant methods as well [24].

5 Coherence for collision detection be-
tween curved objects

In most dynamic environments, we call the collision de-
tection routine at fairly small time intervals. In this sec-
tion, we present algorithms utilizing temporal and spatial
coherence between successive instances for collision detec-
tion.

5.1 Approximating Curved Objects by Polyhe-

dral Models

We approximate each curved model by a polyhedra (or
polygonal mesh). We apply the fast collision detection al-
gorithm for polyhedra to these polyhedral approximations
for curved models. Eventually a geometric contact is de-
termined by combining this approach and the equations
highlighted in the previous section. We use an e-polytope
approximation for a curved surface. It is defined as:
Definition: Let S be a surface and P be an e-polytope
approximation, if for every point p on the boundary of
polytope P, there is a point 8 on S such that Jjs—p ||[< e
Similarly for each point 8 on S, there is a point p on the
boundary of P such that || p—8||<e.

An e-polytope approximation is obtained by using ei-
ther a simple mesh generation algorithm or an adaptive
subdivision of the surfaces. Given a user defined ¢, algo-
rithms for generating such meshes are highlighted for para-
metric surfaces in [13] and for algebraic surfaces in [15]. In
our implementation we used an inscribed polygonal ap-
proximation to the surface boundary. The e-polytope ap-
proximations are for convex models only. The resulting
polytope is convex as well.

5.2 Convex Curved Surfaces

Given two convex surfaces (say Sa and Sp), we com-
pute an e-polytope approximation for each surface. Let Py
and Pp be € 4-polytope and ¢ p-polytope approximations of
Sa and Sp, respectively. At any instance, let dp be the
minimum distance between P4 and Pp (computed using
the polyhedral collision detection algorithm [22]). Let d,
be the minimum distance between the two surfaces. It
follows from the (inscribed) e-approximation:

M

dp—fA—fBSdanp-

The algorithm proceeds by keeping track of the closest
features between P4 and Pg and updating the bounds on
d; based on d,. Whenever d, < €4 + ¢p, we use local
optimization routines to find the closest features on the
surfaces S5 and Sp. In particular, we formulate the prob-
lem: For optimization routines, we want to minimize the
function

H(s,t,u,v) = E(H.'(s, t,4,v))?,

=1

where Fy abd F; are defined in (2). We use Gauss- Newton
algorithm to minimize F. The initial guess to the variables
is computed in the following manner.

We use the line, say La,B, joining the closest features
of P4 and Pp as an initial guess to the line joining the
closest points of S4 and Sp (in terms of direction). The
initial estimate to the variables in the equations in (2)
is obtained by finding the intersection of the line L4 p
with the surfaces, F(s,¢) and G(u,v). This corresponds
to a line-surface intersection problem and can be solved
using subdivision or algebraic methods [12, 24]. As the
surfaces move along, the coefficients of the equations in
(2) are updated according to the rigid motion. The closest
points between the resulting surfaces are updated using
optimization routines. Finally, when these closest points
coincide, there is a collision.

In practice, the convergence of the optimization rou-
tines to the closest points of So and Sp is a function of
€4 and ep. In fact, the choice of ¢ in the e-polytope ap-
proximation is important to the overall performance of the
algorithm. Ideally, as ¢ — 0, we get a finer approximation
of the curved surface and better the convergence of the
optimization routines. However, a smaller ¢ increases the
number of features in the resulting polytope. Though poly-
hedral collision detection is an expected constant time al-
gorithm at each step, the overall performance of algorithm
is governed by the total number of feature pairs traversed
by the algorithm. The latter is dependent on motion and
the resolution of the approximation. Consequently, a very
small € can slow down the overall algorithm. In our appli-
cations, we have chosen € as a function of the dimension of
a simple bounding box used to bound S4. In particular,
let I be dimension of the smallest cube, enclosing Sa. We
have chosen ¢ = 6i, where .01 < § < .05. This has worked
well in the examples we have tested so far.

The algorithm is similar for surfaces represented alge-
braically. Objects which can be represented as a union of
convex surfaces, we use the hierarchical representation and
the algorithm highlighted above on the leaf nodes.

5.3 Concave Curved Objects

In this section we outline the algorithm for concave sur-
faces, which cannot be represented as a union of convex
patches. A common example is a torus. The approach
based on e-polytope approximation is not applicable, as
the resulting polytope is concave and its convex decompo-

606

sition would result in lots of convex polytopes (of the order
of O(1/¢)).

Given two concave surface models corresponding to
piecewise parametric or piecewise algebraic, we enclose
each with a convex polytope and apply the polyhedral al-
gorithm to the resulting pair. After the resulting polytopes
collide, there may or may not be a collision to the result-
ing pair of surfaces. The problem of collision detection
between two parametric or algebraic surfaces is solved by
finding all the solutions to the equations (4) or (5) and (6).
A real solution in the domain to those equations implies
a geometric collision. The algebraic method based on re-
sultants and eigenvalues is used to find all the solutions
to the equations (4) and (6) [24]. It is possible that these
equations have no common solution. However, we apply
the algebraic method to the first four equations in (4) (or
three equations in (5)) and compute all the solutions. The
resultant method computes all these solutions. As the ob-
Jjects move, we update the coefficients of these equations
based on the rigid motion. We obtain a new set of equa-
tions corresponding to (4) and (6), whose coefficients are
slightly different as compared to the previous set. All the
roots of the new set of equations are updated using New-
ton’s method, by using the previous set of roots as initial
guesses. The convergence of the Newton’s Raphson iter-
ation is a function of motion which the objects undergo
between two time instances. In case the closest features
change considerably, Newton’s method may not converge
and we use the global solver to compute all the solutions
again. This procedure represents an algebraic analog of
the geometric coherence exploited in the earlier section.

As the two objects move closer to each other, the imag-
inary components of some roots start decreasing. Finally,
a real collision occurs when the imaginary component of
one of the roots becomes zero. We do not have to track
all the paths corresponding to all the solutions. After a
few time steps, we only keep track of the solutions whose
imaginary components are decreasing,.

The complexity of this algorithm is dominated by the
time used in global root finding. However, the algorithm is
efficient for low degree curved models only. In particular,
it is efficient for rational parametric surfaces of degree 2,
polynomial parametric surfaces of degree up to 4 and alge-
braic surfaces of degree up to 5. For degrees beyond these,
the global root finder can take order of minutes to com-
pute all the solutions. One possible approach for higher
degree surfaces is to use multiple hierarchy of approxima-
tions with a number of convex models at each stage.

6 Interference Test for Multiple Mov-
ing objects

To check for all possible contacts among n objects at all
time can be quite time consuming, especially in a large en-
vironment. In order to avoid unnecessary computations,
we present two methods: one assumes the knowledge of
maximum acceleration and velocity, the other purely ex-
ploits the spatial arrangement without any other informa-

tion to reduce the number of pairwise interference tests.
6.1 Scheduling Scheme

The algorithm maintains a priority queue of all object
pairs. They are sorted by bound on collision time, with
the one most likely to collide appearing at the top of the
queue. The approximation is a lower bound on the time to
collision, so no collisions are missed. Non-convex objects,
which are represented as hierarchy trees, are treated as
single objects from the point of view of the queue. That
is, only the roots of the hierarchy trees are paired with
other objects in the queue.)

The algorithm first has to compute the initial separation
and bound on collision time among all pairs of objects,
assuming that the magnitude of relative initial velocity,
relative maximum acceleration and velocity limits among
them are given. After initialization, at each step it only
computes the closest feature pair and the distance between
the pair of objects at the top of priority queue; meanwhile
we ignore all other object pairs until the clock reaches the
next “wakeup” time. “Wakeup” time W; for each object
pair P; is defined as

Wi=1t,+1t

where t’, is the lower bound on time to collision for each
pair P; for most situation and to is the current time. i,
can be derived as the following:

Let @maz be an upper bound on the relative acceleration
between any two pointson any pair of objects. The bound
dmaz can be easily obtained from bounds on the absolute
linear and angular acceleration and angular velocities of
the bodies and their diameters. Let d be the initial sepa-
ration for a given pair of objects, and v; the initial relative
velocity of the closest points on these objects. Then we
can bound the time t. to collision as

t,‘ vV U? + 2ama.:d — v

Gmazx

We redefine t', as ti, = max(t,tmin), where tmin is a
minimum effective time resolution of the calculation.

If no upper bounds on the velocity and acceleration
can be assumed, we suggest algorithms which impose a
bounding box hierarchy on each object in the environment
to reduce the naive bound of O(n?) pairwise comparisons
for a dynamic environment of n objects.

6.2 Sorting and Interval Tree

In the three-dimensional workspace, if two bodies col-
lide then their projections down to the lower-dimension
hyperplanes must overlap as well. Therefore, if we can ef-
ficiently update their overlapping status in each axis or
in a 2-dimensional hyperplane, we can easily eliminate
the object pairs which are definitely not in contact with
each other. In order to quickly determine all object pairs
overlapping in the lower dimensions, we impose a virtual
bounding box hierarchy on each body.

607

120.0
80.0

40.0

20.0

|

0.0 100.0 200.0 900.0
total number of vertices

Figure 3: Computation time vs. total no. of vertices

In computational geometry, algorithms to solve the
overlapping problem for d-dimensional bounding boxes in
O(nlog®n +s) time are known, where s is the number of
pairwise overlaps [11, 19, 29]. This bound can be improved
using coherence [3].

6.2.1 One-Dimensional Sweep and Prune

Let a one-dimensional bounding box be [b, ¢] where b and e
are the real numbers representing the beginning and end-
ing points. To determine all pairs of overlapping intervals
given a list of n intervals, we need to verify for all pairs
iand jif b; € [bj,e;] or b; € [bi,ei], 1 < 4,5 < n. This
can be solved by first sorting a list of all b; and e; values,
from the lowest to the highest. Then, the list is swept to
find all the intervals which overlap. The sorting process
takes O(nlogn) and O(n) to sweep through a sorted list
and O(s) to output each overlap where s is the number of
overlap.

6.2.2 Interval Tree for 2D Intersection Tests

Another approach is to extend the one-dimensional sweep-
ing and pruning technique to the higher dimensional. We
use an “interval tree” for 2-dimensional intersection tests
[29] to reduce the number of pairwise checks for overlap-
ping. However, as mentioned eatlier, the time bound will
be worse than O(n) for two or three-dimensional sweep
and prune due to insertion and deletion of an interval in a
tree structure. It is more efficient for a dense environment
where swaps of intervals along each axis occur frequently.

7 Experimental Results

We have implemented the above algorithms in C and
Lisp and tested their performance on various environ-
ments. The collision detection routine for convex poly-
topes is very efficient. Our implementation in C gives us
a roughly constant time performance of 50-70 microsec-
onds per object pairs of arbitrary complexity on SGI In-
digo (200-300 microseconds per object pairs on a 12.5 Mips
1.4 Mega flops Sun4 Sparc Station). Figure 3 shows the
roughly constant time performance for polygonized spher-
ical and cylindrical objects of various resolutions. Each
data point is taken as the average value of 1000 trials.

As for curved objects, the algorithm only checks for col-
lision between their polyhedral control polytopes, which
takes roughly constant time. For example, once the con-
trol polytopes of two tori intersect, the problem is reduced
to finding the eigendecomposition of a 96 x 96 matrix [24)
using resultants. The eigendecomposition takes slightly
more than a second on the IBM RS/6000.

The pairwise polyhedral collision algorithm and
scheduling scheme with bounding boxes have been used
in dynamic simulator developed at Berkeley [26] and sig-
nificantly reduced the overall run time to make real time
dynamic simulation possible. The hybrid algorithm for
multiple objects reduces overall run time remarkably as
compared to keeping track of O(n?) features for an en-
vironment of n bodies. Efficient algorithms for collision
detection between large-scaled environments and their ap-
plication to architecture walkthrough are presented in (7].

We have applied our implementation on a Puma560
moving in an environment with several obstacles. When
there is mo critical event (one or multiple collisions), the
scheduling scheme only checks for possible interferences be-
tween a Puma link and one obstacle which are most likely
to collide. When there is at least one pairwise contact oc-
curring, usually only a small portion of priority queue gets
rearranged.

Comparing these performance figures with more recent
results [14, 16, 31], we feel that our approaches compare
very favorably as on-line collision detection for obstacle
avoidance path planning or other dynamic simulations in
robotics as well.

References

[1] D. Baraff. Curved surfaces and coherence for non-penetrating
rigid body simulation. ACM Computer Graphics, 24(4):19-28,
1990.

[2] R. Barzel and A. Barr. A modeling system based on dynamic
constraints. ACM Computer Graphics, 22(4):31-39, 1988.
[3] 3. L. Bentley and J. H. Friedman. Data structures for range
searching. Computing Surveys, 11(4), December 1979.

[4]

J. W. Boyse. Interference detection among solids and surfaces.
Comm. ACM, 22(1):3-9, 1979.

[5] S. A. Cameron and R. K. Culley. Determining the minimum
translational distance between two convex polyhedra. Proc.
IEEE ICRA, pages pp. 591-596, 1986.

[6} J. F. Canny. Collision detection for moving polyhedra. /EEE
Trans. PAMI, 8:pp. 200-209, 1986.

J. Cohen, M. Lin, D. Manocha, and M. Ponamgi. Exact
collision detection for interactive, large-scaled environments.
Tech Report #TR94-005, 1994. University of North Carolina,
Chapel Hill.

[8] D. P. Dobkin and D. G. Kirkpatrick. Determining the sep-
aration of preprocessed polyhedra - a unified approach. In
Proc. 17th Internat. Colloq. Automata Lang. Program, vol-
ume 443 of Lecture Notes in Computer Science, pages 400
413. Springer-Verlag, 1990.

B. R. Donald. Motion planning with six degrees of freedom.
Master’s thesis, MIT Artificial Intelligence Lab., 1984. AI-TR-
791.

(s}

608

[10] Tom Duff. Interval arithmetic and recursive subdivision for im-
plicit functions and conatructive solid geometry. ACM Com-
puter Graphics, 26(2):131-139, 1992.

[11) H. Edelsbrunner. A new approach to rectangle intersections,

part ikii. Intern. J. Computer Math., 13:pp. 209-229, 1983.

[12) ‘a. Farin. Curves and Surfaces for Computer Aided Geomet-
ric Design: A Practical Guide. Academic Press Inc., 1990.

D. Filip, R. Magedson, and R. Markot. Surface algorithms
using bounds on derivatives. GAGD, 3:295-311, 1986.

E. G. Gilbert, D. W. Johnson, and 8. 8. Keerthi. A fast pro-
cedure for computing the distance between objects in three-
dimensional space. JEEE J. Robotics and Automation, vol
RA-4:pp. 193-203, 1988.

Mark Hall and Joe Warren. Adaptive polygonalization of im-
plicitly defined surfaces. IEEE Computer Graphics and Ap-
plications, 10(6):33-42, November 1990.

G. Hamlin, R. Kelley, and J. Tornero. Efficient- distance cal-
culation using spherically-extended polytope (s-tope) model.
IEEE Conference on Robotics and Automation, pages pp.
2502-2507, 1992.

3]

(14

[18)

(16]

[17] B. V. Herzen, A. H. Barr, and H. R. Zatz. Geometric collisions
for time-dependent parametric surfaces. Computer Graphics,

24(4):39-48, 1990.

C.M. Hoffmann. Geometric and Solid Modeling. Morgan
Kaufmann, San Mateo, California, 1989.

J.E. Hopcroft, J.T. Schwartz, and M. Sharir. Efficient detec-
tion of intersections among spheres. The International Jour-
nal of Robotics Research, 2(4):77-80, 1983.

J.C. Latombe. Robot Motion Planning. Kluwer Academic
Publishers, 1991.

[18]

[19]

[20]

[21] Ming. C. Lin. Efficient Collision Detection for Animation
and Robotics. PhD thesis, University of California, Berkeley,
1993.

[22] Ming C. Lin and John F. Canny. A fast algorithms for incre-
mental distance calculation. Proc. IEEE ICRA 1991, 2:1008—
1014, 1991.

[23] T. Lozano-Pérez and M. Wesley. An algorithm for planning
collision-free paths among polyhedral obstacles. Comm. ACM,
22(10):pp. 560-570, 1979.

[24] D. Manocha. Algebraic and Numeric Technigques for Mod-
eling and Robotics. PhD thesis, Computer Science Division,
Department of Electrical Engineering and Computer Science,
University of California, Berkeley, May 1992.

[25] N. Megiddo. Linear-time algorithms for linear programming in
3 and related problems. STAM J. Computing, 12:pp. 759-776,
1983.

[26] B. Mirtich and J. Canny. Impusle-based, real time dynamic
simulation. Submitted to ACM SIGGRAPH, 1993. University
of California, Berkeley.

[27] M. H. Overmars. Point location in fat subdivisions. Inform.
Proc. Lett., 44:261-265, 1992,

[28] R. Seidel. Linear programming and convex hulls made easy.
In Proc. 6th Ann. ACM Conf. on Computational Geometry,
pages 211-215, Berkeley, California, 1990.

[29) H. W. Six and D. Wood. Counting and reporting intersections
of d-ranges. IEEE Trans. on Computers, C-31(No. 3), March
1982.

J. M. Snyder and etc. Interval methods for multi-point col-
lisions between time-dependent curved surfaces. ACM SIG-
GRAPH, pages 321-334, August 1993.

S. Zeghloul, P. Rambeaud, and J. Lallemand. A fast distance
calculation between convex objects by optimization approach.
IEEE Conference on Robotics and Automation, pages pp.
2520-2525, 1992.

[30]

[31]

