A General Approach to Removing Degeneracies *

Ioannis Emiris

John Canny

Computer Science Division
University of California, Berkeley
Berkeley CA 94720

Abstract

We wish to increase the power of an arbitrary algo-
rithm designed for non-degenerate input, by allowing
it to ezecute on all inputs. We concentrate on direct
perturbations that do not affect the output for inputs
in general position. Otherwise, given the continuily
of the problem mapping, our perturbations cause the
algorithm to produce an output arbitrarily close, if not
coincident, 1o the correct one. For a special class of
algorithms that includes most geometric ones, we de-
scribe a deterministic method that affects only the bit
complezity, by incurring an ezira factor, polynomial
in the input size. For general algorithms, a random-
ized scheme is applied with arbitrarily high probability
of success. Then, the bit complezity is bounded by a
small-degree polynomial in the original complexzity. In
addition to being simpler than previous ones, these are
the first efficient perturbation methods.

1 Introduction

Quite often algorithms are designed under the as-
sumption of input non-degeneracy. Although they can
have many specific forms, most degeneracies in geo-
metric or algebraic algorithms reduce to a division
by zero, or to a sign determination for a value which
is zero. In this paper we describe efficient methods
for systematically avoiding such degeneracies using
symbolic perturbations. Our methods apply to algo-
rithms that can be represented as algebraic branching
programs, which includes most calculations performed
with real number inputs.

Symbolic perturbations have been studied in {10]
and in a more general context in [18]. The main con-
tribution of this paper is to introduce the first general
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and efficient direct perturbations. Previous methods
incurred an extra computational cost that was expo-
nential in the input size.

The principal domains of applicability are to geo-
metric algorithms and algebraic algorithms over the
real numbers. Take, for instance, a Convex Hull algo-
rithm in arbitrary dimension. It is typically described
under the hypothesis of general position which ex-
cludes several possibilities, such as more than k points
lying on the same (k — 1)-dimensional hyperplane, in
k-dimensional euclidean space. A more detailed study
of geometric algorithms appears in [12].

For an algebraic problem, consider Gaussian Elim-
ination, which is most simply implemented under the
hypothesis that the pivot never vanishes. Our per-
turbation scheme accepts an algebraic branching pro-
gram written under these hypotheses, and outputs a
slightly longer program that works for all inputs.

Direct perturbations change the original input in-
stance into a non-degenerate one, which is arbitrarily
close (in the usual euclidean metric) to the original
input. We give a deterministic method for algorithms
that branch only on the sign of determinants, which
includes many or most geometric algorithms. This
does not affect the algebraic complexity of the algo-
rithm but increases its bit complexity by a factor of
O(d**t*), where d is the dimension of the geometric
space of the input objects and « is an arbitrarily small
positive constant. In several cases this factor is con-
stant.

For general algorithms, we propose a randomized
scheme. This incurs a factor of O(d'**) on the al-
gebraic complexity, where d is the highest degree in
the input variables of any polynomial in the program.
Under the bit model, the running time of the new pro-
gram is asymptotically smaller than ¢3+* where ¢ is
the running time of the original one; « is again an
arbitrarily small positive constant.

The next section provides all definitions. Section
3 is a comparative study of previous work on han-
dling degeneracies. Sections 4.1 and 4.2 describe the



direct perturbations for algorithms with determinant
and rational tests respectively. We conclude with a
discussion of future directions in our work.

2 Preliminaries
2.1 Computation model

We are interested in algorithms that perform arith-
metic operations and can branch. The input is a
finite set of numeric values from some ordered infi-
nite field. We focus on the field of reals, although
our results apply to any ordered infinite field. Let
x = (21,...,2,) € R"® be the input variables and
a=(aj,...,a,) an actual input instance.

Based on the real RAM model of [15] and influ-
enced by [1] and [14], we define an algebraic branch-
ing program to be a (finite) directed graph G together
with a function ®. The edges represent control flow.
The program can write to and read from a mem-
ory bank of real numbers y1,ys,...,ym, where m is
bounded by a polynomial in n. Every program may
produce different outputs; each output is a set of finite
objects, uniquely defined by a subset of the input and
memory bank variables.

The vertices of G have zero, one or three outgoing
edges. There exists exactly one vertex of outdegree
one (input vertez). It has no incoming edge and is the
vertex where execution begins. Function ® assigns

¢ to every vertex v of outdegree one (operation ver-
tez) an instruction of the form

fo :fvlofu; or f, =c°fuu

where, for i € {1,2}, f,, either belongs to
{21,...,2,} or is some y; whose value has been
computed at some vertex u that belongs to every
path leading to v; o € {+,—, x, /} and ¢ is a real
constant; the computed value of f, is stored at
some y;

¢ to every vertex v of outdegree three (branching
vertez) a test of the form

fu:0

where f, belongs to {21,...,2,)} or is some Yj
with value computed at some vertex w which lies
on every path from the input vertex to v; branch-
ing depends on whether f, is positive, zero or
negative;

¢ to every vertex of outdegree zero (output vertez)
an output.

Given input a € R", the program will traverse a
computation path P(a) in G from the source to some
output vertex. Branching depends on the sign of the
rational expression in the input variables at the spe-
cific branching vertex. The program is essentially a
flowchart; the data-flow graph is embedded and has
structure that depends on the results of the branching.

We shall be interested in two ways of assigning a
cost to a specific computation. The first supposes that
all operations have unit cost, therefore the length of
P(a) expresses the cost of the algebraic computation.

More realistically, we may wish to consider the ef-
fect of the operands’ bit size on the speed of arith-
metic operations. We shall say that under the bit
model of the algebraic branching program, there is a
cost function on the vertices of the program. Branch-
ing, input and output vertices have unit cost. The
cost of operation vertices depends on the particu-
lar operation executed as well as the bit size of the
operands. If this size is O(b), then addition and sub-
traction have cost O(b), while the cost of multiplica-
tion and division is denoted by M(b). There exists an
algorithm by Schénhage and Strassen which obtains
M(b) = O(blogbloglogb) [13]. The total cost of a
computation equals the sum of the costs over all ver-
tices on P(a). Under both viewpoints, the time to
access the memory is assumed constant and therefore
does not affect the total running time asymptotically.

Our perturbations will be defined in terms of a sym-
bolic variable ¢, which implies that computation on
the perturbed input is symbolic. This formally corre-
sponds to modifying the given program into a new one
represented by the same graph, but where f, and Yi
are polynomials in ¢, for each vertex v and every j in
[1,...,m]. Then the cost of operation and branching
vertices is higher.

An equivalent view is to construct a new program
by expanding every operation vertex into a set of nu-
meric operations that compute the polynomial. Sim-
ilarly, every branching vertex corresponds to a se-
quence of branching vertices, each testing one term of
the e-polynomial. The new program has the same type
of vertices as the original one but is longer. Its com-
plexity depends on the maximum path length from
the source to some output vertex.

An additional provision is that of exact arith-
metic. We regard our perturbation scheme as built
on top of an algorithm which works correctly for non-
degenerate input and thus can handle round-off errors;
see [18] for a relevant discussion.

2.2 Degeneracy

The notion of degeneracy is hard to formalize be-
cause it may depend not only on the particular prob-
lem but also on the algorithm chosen to attack it.
For example, an intrinsic or problem-dependent de-



generacy is a singular matrix, in the context of the
Matrix Inversion problem. It constitutes an input for
which there is no output. An algorithm-dependent de-
generacy for the Gaussian Elimination algorithm that
solves the Inversion problem for non-singular matrices
is a matrix with a singular principal minor.

Yap in [18] uses the Convex Hull problem to distin-
guish between, what he calls, inherent and algorithm
induced degeneracies. An example of the former kind,
in the planar case, is for 3 points to be collinear. On
the other hand, 2 covertical points have nothing spe-
cial with respect to the problem mapping but may
constitute a degeneracy for a particular algorithm that
uses, say, a vertical sweep-line or relies on some verti-
cal partitioning.

The occurrence of these degenerate configurations,
as well as many others, can be formulated as poly-
nomials evaluating to zero. This paper focuses on
algorithm-dependent degeneracies, which subsume in-
trinsic ones, and are characterized as follows.

Definition 2.1 An input instance is degenerate with
respect to some algorithm if it causes the rational
ezpression f at some branching vertez of the algo-
rithm’s algebraic branching program to evaluate to
zero. Equivalently, a € R™ is in general position if
there is no test rational expression f such that f #0
and f(a) = 0.

Let us adopt a more abstract standpoint and con-
sider the space of all input instances. It can be em-
bedded in R", equipped with the standard euclidean
metric. Every test expression may be regarded as a
mapping of input space to {+,0, —}. The preimage of
{0} under a particular expression is a set in R” with
codimension at least 1. The union of all these preim-
ages partitions the input space into cells that lead to
the same output.

Definition 2.2 A problem mapping associales with
almost every input instance a unique output, which is
called an (ezact)} solution.

The solution may be thought of as the output pro-
duced by a solver of infinite computational power. In-
trinsic degeneracies are exactly the points at which
this mapping fails to exist or is not continuous. Each
belongs to the preimage of {0} under the mapping of
some test expression.

An algorithm mapping is a restriction of the prob-
lem mapping to instances that are not intrinsic degen-
eracies. Algorithm-dependent degeneracies may also
be viewed as the union of the preimages of {0} under
the mappings of all test expressions.

2.3 Problem definition

Given is an algorithm that solves a problem un-
der the assumption of non-degeneracy. Our aim is
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to directly perturb an arbitrary input instance a into
some other instance a{e) in a systematic way so that
the same algorithm can always produce a meaning-
ful output. The perturbation is controlled by the in-
finitesimal variable €. A valid direct perturbation must
define a(e) in general position and satisfy the following
condition:

¢ For non-degenerate inputs, the algorithm pro-
duces the same output whether it runs on a or

a(e).

o For degenerate inputs, if the problem mapping
is continuous, then the algorithm on a(¢) returns
either the exact solution or an output arbitrarily
close to it.

o Otherwise, the algorithm produces a correct so-
lution for a(e) and the latter is arbitrarily close
to a.

In the first case, it suffices to prove that every test
expression, regarded as an e-polynomial, has a non-
vanishing constant term. In other words, that the
paths followed in the program for a and a(e) are iden-
tical. Then the final output that is obtained by ig-
noring all e-terms is the same as the one produced on
a.

In the second case, note that the algorithm map-
ping is continuous in its own domain. Refer to the cells
defined by the preimages of {0}, each corresponding
to a unique output. Observe that the output space is
a topological subspace of a real space, defined by the
algorithm mapping. Then, the continuity property
together with the proximity of the inputs imply the
proximity of the respective outputs. Hence, to demon-
strate the validity of the perturbation, it suffices to
show the proximity of a and a(e) in the topology in
which the problem mapping is continuous. Valid per- -
turbations are most powerful in the special case in
which it makes sense to let the infinitesimal approach
zero; this directly produces the exact solution.

In summary, all we need to prove for the validity
of our direct perturbations is the following condition:
that each defines a non-degenerate instance a(e) ar-
bitrarily close to a, such that when the latter is in -
general position, P(a) and P(a(e)) are identical.

To illustrate, consider the Matrix Inversion prob-
lem, for which there is no solution for an unperturbed
singular matrix. In this case we only require that the
algorithm returns a solution to the perturbed instance
which has to be arbitrarily close to the original one,
under the standard euclidean metric.

Restricted to non-singular matrices, the problem
mapping is continuous. Then a valid perturbation
produces an output arbitrarily close to the correct one.
In fact, after obtaining the output on the perturbed
input, we can let the infinitesimal variable go to zero
and arrive at the exact solution.



For the Convex Hull problem, there is always a
solution. Its combinatorial nature prohibits the out-
put space topology from being continuous. Point sets
that lie arbitrarily close in input space may yield
convex hulls with different number of vertices, which
thus belong to disconnected regions of output space.
Nonetheless, there exist measures of success in out-
put space, under which the approximate solution is
arbitrarily close to the exact one. Take for instance
the volume of the symmetric difference between the
actual output and the exact convex hull. This volume
tends to zero with the infinitesimal variable.

Specific applications may require that the facets of
the hull include exactly the points that define them,
which implies that extra (degenerate) points should be
removed. Then a post-processing phase is necessary
in order to produce the solution. Edelsbrunner in [9)]
discusses the issue of post-processing.

2.4 Infinitesimals

Our approach in removing degeneracies is to add
to the input values arbitrarily small quantities. To
this effect we make use of infinitesimals. The process
of extending the field of reals by an infinitesimal is a
classical technique, formalized in [2], and used by the
second author in [3] and [5).

Definition 2.3 We call ¢ infinitesimal with respect to
R if the extension R(c) is ordered so that ¢ is positive
but smaller than any positive element of R.

We write 0 < € <« 1 to indicate that every poly-
nomial in € has value smaller than 1. The sign of a
polynomial in € equals the sign of the non-zero term
of lowest degree in €. Towers of field extensions by an
infinitesimal are also possible. When extending R(6)
recursively by e we write 0 < ¢ € § < 1 to indicate
that no polynomial in € can exceed §.

Alternatively, € can belong to the reals and as-
sume an arbitrarily small positive value. Under the
algebraic branching program model it is immaterial
whether we view ¢ as an infinitesimal or an arbitrar-
ily small real. To see this, consider a special case of
the “Transfer Principle” [17]. There is a finite num-
ber of polynomials encountered at branching vertices
on P(a), so there is a minimum positive real value
among all of their roots. As long as ¢ is smaller than
that minimum, it may take any positive value and
none of these polynomials will change sign. Hence,
the algorithm will follow the same path and, in gen-
eral, it will behave in the same way as if ¢ was an
infinitesimal extension. In this paper, we make use of
both standpoints and regard € sometimes as an exten-
sion to the reals and sometimes as an arbitrarily small
real number.

The general strategy is to transform the real input
values into e-polynomials. But can we still run the
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same algorithm on symbolic input? Do we know that
it shall halt? The answer is affirmative. Due to the
above argument, the path traced on the perturbed
input will be the same as if we had substituted € by
a sufficiently small positive real value. Thus, there
exists an actual real input for which the algorithm
behaves the same as for the perturbed input.

3 Other approaches

Symmetry breaking rules in linear programming,
exemplified by [6] and [7], are the earliest systematic
approaches to our problem. Edelsbrunner and Miicke
generalize in [10] a scheme called Simulation of Sim-
plicity (SoS for short), presented in [8], [11] and [9].
SoS applies to algorithms whose tests are determi-
nants, just as our deterministic direct perturbation.
It introduces the following perturbation of input pa-
rameter p; ;:

2i5—j

pije)=pij+e 7,

where § > d and d is the dimension of the geomet-
ric space in which the input objects lie. The sign of
the perturbed determinant is the sign of the smallest-
degree term in its e-expression.

In the worst case, this computation takes £(29)
steps since it may have to check that many determi-
nants of submatrices of the perturbed matrix. This
bound is obtained by calculating the number of dis-
tinct vectors (v, ..., v4_3), where d denotes the order
of the original matrix. Every v; is a positive integer
less than or equal to d and, for every i < j, v; < vj.
In [10] every such vector is associated with a distinct
submatrix whose determinant may have to be evalu-
ated.

Yap in [18] deals with the general setting where
the test polynomials are arbitrary and shows, in [19],
that his scheme is consistent relative to infinitesimal
perturbations. First it imposes a total ordering on all
power products

e; >0

n
- €i
w = | Ia,-',
i=1

where a = (a1, ...,ay) is the input. Let wy, w,, ... be
the ordered list of power products larger than 1, i.e.
those with at least one positive exponent. Then, each
polynomial p(a) is associated with the infinite list

S(P) = (p,pwnpw::'“)

where p,, is the partial derivative of p with respect to
wg. The sign of a non-zero polynomial p is taken to be
the sign of the first polynomial in S(p) whose value is



not zero, which can always be found after examining
a finite number of terms.

The time complexity to evaluate an n-variate s-
term polynomial p is proportional to ns. Yap focuses
on sparse polynomials for which s < d, where d de-
notes the maximum degree of any variable in p. In the
case that all variables are of degree d, p has at least
d® non-trivial derivatives. Their subsequent evalua-
tion requires £2(ns’) multiplications for each deriva-
tive of s’ terms. At worst, all partial derivatives have
to be computed and d is exponential in n. Then the
complexity is £2(d"), which is exponential in the input
size.

In short, both methods incur at least an exponen-
tial worst-case complexity overhead under the alge-
braic branching program model. Our methods guar-
antee a polynomial overhead in addition to being sig-
nificantly simpler.

4 Direct perturbations

This section contains the main contributions of
the paper. It describes valid perturbations to cope
with degeneracies. First we examine algorithms whose
branching decisions depend on the sign of determi-
nants and offer a deterministic method. Allowing
arbitrary test polynomials leads us to a randomized
method. In both cases we perturb directly the input
objects by an amount controlled by an infinitesimal
variable.

4.1 Determinant tests

We first restrict attention to algorithms whose test
expressions are determinants of two specific types, to
be specified below. The importance of the case stems
from the fact that it covers several computational ge-
ometry algorithms, including those computing convex
hulls and hyperplane arrangements; [12] expands on
this topic.

Under the algebraic program model, degeneracy oc-
curs exactly when a test determinant vanishes. Let
the n distinct input objects be p1, pa, ... pn. Every
p; is defined by d real parameters pi1, pi2, - - - Pid)
for an arbitrary integer d. We can think of the input
as n points in R%. We perturb every parameter p;,; to
obtain p; j(€) where € is a symbolic variable.

(1)

All computations on the perturbed input are carried
out symbolically.
First consider matrix Ag4; whose rows correspond

pij(e) =pij +ei.
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to points p;,, Piyy -+ Pigysr-

1 pia Piy,2 Pi,d

1 pi:,l : pl'zyz pi?rd
Ad+1 = . . .

1 DPigg1,1  Piggr,2 Piggr,d

The perturbed matrix Ag4i1(€) contains the corre-
sponding perturbed parameters. Its determinant is
given by

detAd.H(f) = detAd.H_
+ (¢ terms,1<k<d—1)
+ €ddein+1,

where V41 is a (d+1) x (d+ 1) Vandermonde matrix
with

1 4 i2 ¢
3 3
2

det Vd+1

. 02. -d
1 i g4 Ty

[1Ge - ).

k>1

The expression for detAg41(€) is a polynomial in €
of degree d, which is not identically zero because of
the non-vanishing highest order term.

The second matrix of interest has rows representing

input objects p;,, Pig, - - - Pia-
Pit Piy2 Piyd
Ag= pi?,l pi?,2 Pi?,d
pt';,l Pi;,z Pi;,d

The corresponding matrix Ag(e) of the perturbed pa-
rameters has determinant

detAg(e) = detAg
+ (" terms,1<k<d-1)
d
+ ([ i) detva,
k=1

where Vj is a d x d Vandermonde matrix. Again, the
highest order term is non-zero, hence the ¢-polynomial
is not identically zero.

Lemma 4.1 There erists a positive real constant €
such that, for every positive real € < €9, every Agy1(e)
and Ag(€) matriz occurring at a branching node of
the algebraic branching program is non-singular and
its determinant has constant sign.



Proof From the theory of polynomials over ordered
fields, any polynomial which is not identically zero,
has a set of roots of codimension 1. Any algebraic set
of roots, or zero set, whose dimension is at most 1,
is either the entire (real) line or the union of a finite
number of points.

The expressions for detAgy1(e) and detA4(e) are
polynomials in ¢ and are not identically zero. Thus,
there exists a finite number of roots for each one. Let-
ting €g be the minimum positive such root, over all
test determinants encountered, proves the lemma. O

We now address the question of computing the sign
of the perturbed determinant. One obvious way is to
evaluate the terms in the determinant’s e-expansion
in increasing order of the exponent of €. The process
stops at the first non-vanishing term and reports its
sign. This is the approach adopted by the two other
techniques described above, [10] and [18]. Our per-
turbation scheme lends itself to a more efficient trick.

detAgys(e) =
1€ Piy1(€) Piy,a(€)
€ Pi¢+,,l(€) pl'd+1,d(€)
1 0 pig1 ... piug
= ;det : : + e Viy
0 pign Pigyr,d

= %det (L + 6V4+1) .
Having implicitly defined L, denoting by I; the k x k

unit matrix and relying on the fact that every Van-
dermonde matrix Vg, is invertible, we have

detAgyi(e) =
1
= —del(=Vay1) det((=V31)L — € Lay)

= %(_1)d+1detv;,+1 det(M — € Iz41).

Similarly, Vandermonde matrix V; is used to express

d
detAg(e) = [ ix (—1)%detVa det(N — e I,),

k=1

where

O SO - B It

. -2 .d

12 2 1
N=- 2 ? Ag

, 5 4
R S BRI T3

Let s express the bit size of the input parameters and
let MM (k) denote the number of operations needed
to multiply two k x k matrices.

Lemma 4.2 Computing the sign of perturbed deter-
minants detAgyy(€) and detAg(e) under the algebraic
branching program model can be done in O(MM (d))
steps.  These computations, under the bit model,
have worst-case complezity O(MM(d))O(M(s) +
M(d%logn)).

Proof Computations for both detAgyi(e) and
detA 4(¢) can be treated analogously, for they have the
same two possible bottlenecks. Computing M or N
takes O(MM(d)) arithmetic operations. Computing
det(M —e Ig41) or det(N —e I,) respectively, is a char-
acteristic polynomial computation for which there ex-
ists an algorithm by Keller-Gehrig [14] which requires
O(MM(d)) operations.

Clearly, the perturbation quantities have bit size
O(dlogn). After inverting the Vandermonde matrix
the resulting matrix has entries of bit size O(d? logn).
Then each operation has bit cost bounded by the max-
imum of M(s) and M(d?logn). o

Proposition 4.3 Consider algorithms that compute
and branch on determinants of A; and Ag, for § <d,
where d is the dimension of the geometric space of the
input objects. The perturbation defined by (1) is valid
and does not change the running-time complezity of
the algorithm under the algebraic branching program
model. Under the bit model the complezity is increased
by a factor O(d***), where  is an arbitrarily small
positive constant.

Proof At branching nodes, the sign of the perturbed
determinant is taken to be the sign of the lowest or-
der non-vanishing term. If the original determinant
is non-zero, it dominates the e-polynomial. Other-
wise, we simulate an artificial non-degenerate situa-
tion in which the input points are arbitrarily close to
the original ones. Lemma 4.1 proves the consistency
of our answers as ¢ approaches to zero on the positive
real axis.

Lemma 4.2 asserts that the computation of a deter-
minant takes O(MM (d)) operations which is the orig-
inal complexity of this operation since a d x d determi-
nant had to be computed. Under the bit model, the
original complexity per operation is M(s) > M(logn),
since there are n distinct input objects. On perturbed
input the worst-case bit complexity is M(d?logn)
which is bounded by O(d?log?d)M(logn). Hence
there is an extra factor O(d? log® d) = O(d2**), where
a is a constant that can be arbitrarily small, as long
as it remains positive. o



Even if d is not fixed, it is usually a small integer,
independent of n. Then, the bit complexity is in-
creased by a small factor and asymptotically remains
the same.

4.2 Polynomial tests

We generalize our scheme into a randomized per-
turbation that applies to algebraic branching pro-
grams with arbitrary rational expressions as branch-
ing tests. Let d be the maximum total degree of any
polynomial appearing in a vertex of some program. A
branching vertex v decides on the sign of an arbitrary
rational expression f, which we write as f = p/e.
Both numerator and denominator are polynomials in
the input variables x whose total degree obviously
cannot exceed d.

If x belongs to R™, let a = (a1, .. .,@y) be a par-
ticular input. By definition, this input is degenerate
exactly when it causes a test expression, which is de-
fined and not identically zero, to vanish. Here we are
concerned only with such tests, i.e. tests f for which
p(x) # 0 and ¢(x) # 0. For a given input a, define the
perturbed input a(e) = (a1(€), .. -, an(e)) as follows:

)
where ¢ is an infinitesimal symbolic variable and r; is a
random integer. Computation on the perturbed input
is carried out symbolically, since we never substitute a
value for ¢, which implies that results of computations
and test expressions are rational expressions in €. For
branches, the sign of an e-polynomial is taken to be
the sign of its lowest-order non-zero term.

Each r; is chosen uniformly over a range that de-
pends on the desired probability of success. All claims
in this section hold with probability at least 1 —1/c,
for any positive real constant c. Then the bit size of
the perturbation quantities is

a,-(e) = a; + €r;

lgc+1gd+ (1g3) T+ 1,

where Ig expresses the logarithm of base 2 and T is the
maximum number of branches on a computation path.
Clearly, the total number of polynomials appearing at
the numerator or denominator of a test expression is
at most 2 3.

It is feasible that some set of random variables will
not avoid degeneracies. In this case, the algorithm is
restarted and the random variables are picked anew.
We proceed immediately towards the central result of
this section, which is that perturbation (2) has arbi-
trarily high probability to satisfy the validity condi-
tion.

Lemma 4.4 Let the entries of v = (r1,...,75) be in-
dependently and uniformly chosen integers of (lgec+
lgd+ (g 3) T + 1) bits each, for any positive c. Then,
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there ezists with probability at least 1—1/c, a positive
real constant e such that, for every € smaller than €,
every rational ezpression f(a-+er) is defined, non-zero
and of constant sign.

Proof Let g(a+er) be any polynomial appearing at
the numerator or denominator of some test expression
and let G(a + er) be the product of all distinct poly-
nomials g. By hypothesis, none of these polynomials
is identically zero, therefore G also is not identically
zero. For a moment, fix € = 1 and consider G(a + 1r)
as a polynomial in r, whose degree in x and r is the
same. Since d bounds the total degree of anjy polyno-
mial g, the total degree of G is at most 23" d.

Now we apply a lemma proven by Schwartz in [16].
For all i, r; has (Igc+1gd+(1g3) T+1) bits, G is not
the zero polynomial and has total degree 2 3&'(1 . Then
the probability that r, chosen uniformly at random,
is a root of G(a + 1r) is at most 1/c. All claims that
follow hold with probability at least 1 —1/c.

First observe that none of the polynomials g(a+1r)
vanishes at the particular r, hence every g(a+er) may
be regarded as a polynomialin € that is not identically
zero. Consequently, its zero set is of codimension 1
which implies that the latter is either the entire (real)
line or a finite point set. But g(a+ er) # 0, therefore
there is a finite number of real roots and we consider
the minimum positive root for every g. Let € be the
minimum over all polynomials g. o

What is the tradeoff in efficiency? The complexity
of the algorithm is increased by the time required to
manipulate the e-polynomials symbolically. The de-
gree of every polynomial in ¢ is the same as its degree
in x.

Lemma 4.5 Perturbation (2) defines a new program
that goes through O(d) branching and O(d log? d) op-
eration vertices for every branching and operation ver-
tez respectively in the original program. The bit com-
plexity of the new program depends on the bit size of
the operands which is O(ds + dlogd + dT), where s
denotes the bit size of the input parameters and T the
mazimum number of branches on a computation path.

Proof Instead of numeric computations we now
have symbolic ones. Each operation o € {+,—, X, /}
involves multiplication of polynomials in one vari-
able and a Greatest Common Divisor computation
to reduce to lowest terms. The former takes time
O(dlogd) and the latter O(d log?d). Hence every
operation now takes O(d log? d) numeric operations.
Branching vertices must find the lowest non-vanishing
term in the corresponding e-expression, which takes
O(d) time. Formally, we have constructed a new pro-
gram that contains, for every operation vertex of the
original program, O(d log? d) unit-time vertices and,
for every test of the original, O(d) unit-time tests.



On perturbed input, arithmetic is performed on the
original input parameters as well as on the perturba-
tion quantities. They respectively start at bit size s
and O(logd + T'), if ¢ is fixed. They may give rise to
O(ds)-bit and O(dlogd + dT)-bit quantities respec-
tively, since d is the largest power of any polynomial.
The largest of the three terms in O(ds + dlogd + dT)
will determine the final bit complexity. o

Proposition 4.6 The perturbation defined by (2) is
valid with erbitrarily high probability. The running-
time overhead to implement it under the algebraic
branching program model is o O(dlog?d) factor,
where d is the mazimum degree in the input vari-
ables of any polynomial in the program. Under the
bit model, the complezity is O(¢>+*(n)), where ¢(n)
denotes the original complezity and « is an arbitrarily
small positive constant.

Proof Test operations decide on the sign of a per-
turbed rational expression, which is the sign of the
lowest-order term in the e-polynomial that does not
vanish. For non-degenerate inputs, all query poly-
nomials have a non-vanishing real part, i.e. a term
independent of ¢ which dominates the sign. As far
as the computation path is concerned, it is as if the
perturbation had never taken place. For degenerate
inputs, the algorithm behaves as if it was given non-
degenerate input values arbitrarily close to the origi-
nal ones, since ¢ can become vanishingly small and, by
lemma 4.4, not affect the outcome of any branching
decision.

By lemma 4.5, every vertex in the given program
corresponds to at most O(d log? d) vertices in the new
one. This establishes the algebraic complexity over-
head.

With regard to the bit model, we ignore again the
effect of s and write the complexity of the original
program ¢ as T + Ad + B M(d)), with T < T de-
noting the number of branches, A the number of addi-
tions and subtractions and B the number of multipli-
cations and divisions on the computation path that
corresponds to the worst-case complexity. We shall
abuse notation by letting various occurrences of « rep-
resent different constants in interval (0,1). Then we
expand ¢3t* and keep just a few terms:

¢3+a - ¢1+a¢2+u
¢1+a Q(A2+ozd2+a + Bz+ad2+a)_ (3)
The worst case computation path in the modi-

fied program goes through O(T'd) unit-cost branch-
ing vertices, O(Adlog® d) numeric {+,—} operations
and O(Bdlog? d) numeric {x,/} operations. There-
fore, the new complexity is bounded by

O( Td + Adlog? d(dlogd + dT) +
+Bdlog? d M(dlogd + dT) ).
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Clearly, T < T = O(4); furthermore M(b) =
O(blogbloglogb). Each term in the last expression
can be matched with a term in (3) that is asymptoti-
cally larger, hence proving the claim. (]

Corollary 4.7 If the bit complezity of the algorithm
on unperturbed input lies in P or EXP, then its com-
plexity on perturbed input also lies in P or EXP re-
spectively.

Proof Immediate from the previous proposition. O

5 Conclusion

We have studied algorithms modeled as algebraic
branching programs, with inputs from an infinite or-
dered field. This paper describes direct perturbations
on the input, such that an algorithm designed under
the assumption of non-degeneracy can be applied to
all inputs. Our perturbations satisfy the validity con-
dition set out in Section 2.

We defined a deterministic method for algorithms
with determinant tests and a randomized one for
arbitrary test expressions. They both incur ex-
tra complexity factors that are constant in several
cases. Moreover, polynomial and exponential time al-
gorithms always remain in the same complexity class
while being enhanced with the power to execute on ar-
bitrary inputs. Both methods are discerned by their
conceptual elegance and are significantly faster than
previous ones.

It is interesting to attempt extending the notion of
degeneracy over finite fields, where the lack of order
makes our definition of degeneracy invalid. Another
direction of generalization is to observe that the out-
put vertices in the algebraic branching program model
are associated with semi-algebraic sets defined by the
test polynomials encountered on the path from the in-
put vertex. We may wish to perturb these sets into
general position.
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