A Motion Planner for Multiple Mobile Robots

David Parsons and John Canny *

Department of Electrical Engineering and Computer Science
Llectronics Research Laboratory
University ol C'alifornia
Berkeley, CA 94720

Abstract

We describe an algorithmn for planning the motions of several mo-
bile robots which share the same workspace. Each robot is capable
of independent translational motion in two dimensions, and the
workspace contains polygonal obstacles. The algorithm computes
a path for each robot which avoids all obstacles in the workspace
as well as the other robots. It is guaranteed to find a solution if one
exists. The algorithn takes a cell decomposition approach, where
the decomposition used is based on the idea of a product opera-
tion defined on the cells in a decomposition of a two-dimensional
free space. We are implementing this algorithm for the case of
two robots as part of ongoing research into useful algorithms for
task-level programming of the RobotWorld! system.

1 Introduction

This paper describes a solution to a special case of the generalized
mover’s problem. The case we consider is the problem of coordi-
nating the motion of several independent mobile robots moving
in a bounded planar workspace which contains obstacles. The
robots are convex polvgons, and the obstacles may have general
polvgonal shape. The goal is to move the robots from given initial
positions to given final positions in such a way that they avoid
collisions either with each other or with the obstacles.

Each robot is capable of independent translational motion
in 2 dimensions, and so the problem of moving & robots has a 2k-
dimensional configuration space. A valid path through this space
must satisfy a set of constraints of 2 distinct types: those imposed
in order to avoid the collision of any robot with an obstacle, and
those which avoid the collision of any pair of robots with each
other. Togetler these constraints determine the boundary of the
{rec space, which is the set of legal configurations of the system of
robots. A valid path between two configurations exists if and ouly
if they lie in the same connected component of free space. (For
an explanation of the notion of configuration space see [LI’83].)

The algorithm we describe here is a complete solution in the
sense thal it is guaranteed to find a valid path if one exists. The
worst-case runuing time of the algorithm is exponeutial in the
number of robots, which is not surprising since the problem is
known to be PSPACE-hard ([IISS81]). However, we believe that
the design and implementation of a complete solution is justified
for two reasons: 1) in practical applications, the number of robots
is a small fixed quantity, and so the complexity of the algorithm

*This research supported by the David and Lucile Packard Foundation and
NSF Presidential Young Investigator Grant #1RI-8958577
!RobotWorld is a trademark of Automatix. Inc.

CH2876-1/90/0000/0008$01.00 © 1990 IEEE

reduces to polynomial in the size of the workspace description:
and 2) such a solution will provide an important benchmark for
the analysis of faster heuristic algorithms. In particular, we are
motivated by the need to develop practical algorithins for motion
coordination in the RobotWorld environment. (RobotWorld is a
general-purpose robotic assembly system consisting of a numiber
of two-dimensional Sawyer motors magnetically suspended from
a horizontal platten; see [Schi7] for details.)

The geometric problem of computing viable motions for a
robot system in the presence of physical obstacles has received
much attention during the last decade. Both theoretical lower
bounds and useful algorithins for particular cases of the prob-
lem have heen obtained. Excellent overviews of this work can he
found in [ShaR9], [YapR7], and [Whi85). Many particular cases
have been shown to be PSPACE-hard. suggesting an exponen-
tial lower bound on the worst-case running time of any algoritlim
which solves one of these cases {(unless PSPACE = P). Indeed,
all known algorithms for these cases take exponential time in the
worst case, where tlie exponent is at least linear in the number
of degrees of freedom of the robot system. For problems involv-
ing configuration spaces of very high dimension, therefore, only
leuristic solutions will he acceptable in practice. See [BLLS89] for
a recent [ast heuristic approach to a wide class of motion planning
problems of high dimensiou.

Practical complete algorithins have been developed for some
motion planning problems of dimension ranging from 2 to about 6.
Most of Lhese algorithims are based on one of two basic approaches:
the “retraction” approach ([0SYR3]) and the “cell decomposition™
approach ([SSR3]). Both approaches reduce the problem of search-
ing for a path in configuration space to the problem of scarching
for a path in a graph; the approaches differ mainly in how the
graph is constructed. It is also possible to categorize wost al-
gorithis as either global or local. A global algorithin calculates
the entire search graph before the search begins, whereas a lo-
cal algorithm uses the search to guide the graph calculation as it
proceeds.

The algorithm described lere takes a global cell decomposi-
tion approaclh. Tor a given instance of the problew, the algorithm
proceeds in two distinct phases: first it computes a decompo-
sition of the free space for that instance into cells, and then it
searches the resulting adjacency graph for a path. The compu-
tation in the first phase depends only on the given obstacles and
the shapes of the robots; that is, the cell decomposition is in-
dependent of the start and goal coufigurations of the problem
instance. Therefore this step may be thought of as a preprocess-
ing step. and once the graph has been computed it may be used
to answer many path queries for the same obstacle set. In this
sense the algorithm may properly be considered as a solution to

a motion planning gquery problem, in which extra preprocessing
time is deemed acceptable in the interest of fast complete path
finding for particular start/goal configuration pairs. (This dis-
tinction between preprocessing time and query time is common
in many problems in computational geometry; many examples
may be found in [PS85].) Since answering a particular query re-
duces to finding a path through a graph, a variety of fast search
algorithms are applicable to the second phase.

Many previous approaches to solving the multiple mobile
robot problem have been heuristic algorithms, which tend to find
paths quickly in some environments but in others may fail to find
a path and wrongly conclude that none exists. A common form of
such a heuristic is to plan a path for each robot in sequence, tak-
ing care at each planning step to avoid collisions with the paths
generated in previous steps ([ELP&7]). Thus each successive path
is planned in a 3-dimensional “space-time” coufiguration space.
This is tantamount to a greedy algorithm, since a path generated
for one robot may make it impossible to find path(s) for succeed-
ing robot{s) which don’t interfere. A refinement of this technique
([Buc89]) attempts to minimize such conflicts by choosing care-
fully the order in which plans are generated. It does this by max-
imizing the number of robots which can travel in a straight line
from their start point to their goal point. The algorithm therefore
works well in sparse environents, but fails when many obstacles
are introduced.

Our algorithm takes the general approach described for the
case of 2 robots in [S388]. They introduce the paradigm of taking
the product of 2-dimensional cells in a cell decomposition of the
free space for each robot alone, and then further decomposing the
product cells in order to avoid collisions hetween the two robots.
In this paper, our contribution is to apply this paradigm to the
particular problem of planning coordinated motions for convex
polygonal robots moving among polygonal obstacles, and to show
how the linearity of the constraints in this case can be exploited
to implement. the algorithm in a straightforward way.

We now turn to describing the algorithm in detail. In the
next section. we discuss the method in the abstract for & robots,
and in section 3 we give some details of an implementation which
we are developing for the case k = 2.

2 The Algorithm

2.1 Overview

A ecll decomposition of a topological space 5 is a finite partition &
of § such that each set ¢ € &' is a connected set. Twocells b,c € it
are said to be adjacent if (bNT)U (BN c) is not empty, where €
denotes the closure of ¢. The cells of a decomposition A" and the
adjacencies hetween them correspond to the vertices and edges of
a graph G(V). The applicability of cell decompositions to motion
planning stems from the fact that there exists a continuous path
in $ between two points pj,pz € § if and only if there is a path
hetween ¢; and ¢y in the graph G(R'), where A is any cell decom-
position of § and ¢; is the cell in K containing p;. The idea, then,
is to construct a cell decomposition of the free space F' determined
by the robot system geometry and the obstacles of a particular
problem instance, and then do the path searching in the resulting
graph.

In order for a particular cell decomposition &' of a free space
to be useful for path planning, it must have the following charac-
teristics:

1. it must be simple to find a path from any point in one cell to
any point in an adjacent cell;

2. it must be simple to determine which cell ¢ € /" contains any
given point p € F’; and

3. the decomposition itsell wust be straightforwardly com-
putable from the obstacles and the robot geometry.

The cells in the decomposition we use are all convex poly-
topes, and adjacencies exist wherever two polytopes share a facet.
(A facet of a d-dimensional polvtope is a subface of dimen-
sion d — 1, i.e. of codimension 1.) Therefore the first requirement
above is particularly easy to meet: to move from a point in one cell
to a point in an adjacent cell one may move along the piecewise
linear path which goes first to the centroid of the facet shared
by both cells, and then to the destination point. This path is
guaranteed to be valid by the convexity of the cells.

The second requirement could be met by performing a series
of half-space inclusion tests. That is, in order to determine if a
point p is contained in a particular convex polytope 7, one could
simply compare the point against each hyperplane containing a
facet of P. In fact requirement 2 is met even more efficiently by
means of an indexing data structure imposed on the cells dur-
ing their construction. The third requirement is inherent in the
construction algorithm, which we describe next.

2.2 The Cell Decomposition

Recall that for a system with multiple mobile robots. geometric
constraints on legal motions of the system arise from two distinct
sources: obstacle avoidance and inter-robot collision avoidance.
The principal idea behind our cell decomposition of free space is
to separate the processing of the two types of constraints. IMirst
we will discuss each type of constraint in isolation, and then show
how the cell decomposition takes care of them both.

2.2.1 Obstacle constraints

If the inter-robot constraints could be ignored, the problem would
reduce to solving the 2-dimensional planning problem of finding
a path for a single robot in the plane, and repeating this {or each
robot. The 2D free space for a single robot may be computed
by the “obstacle-growing” method ([LP83]), and a useful decom-
position into cells of this free space is easy to obtain: since the
grown obstacles still have polygonal boundaries, the region may
be tesselated into convex polygons. Such a tesselation is easy to
produce, and it constitutes a cell decomposition of free space for
the case of a single robot.

This observation motivates the following construction for
the k-robot case: first, we compute a convex tesselation
T ={P;:i=1,...,n} of the 2D free space I for a single robot.
THere each P; is a convex polygon, and T partitions F, so we have
that i # j = P, P; =0 and that U, P; = Fy. (If the robots
have different shapes, their {ree spaces will also be different, and
so a dilferent tesselation would need to be computed for each.
In this paper we assume for simplicity of presentation that each
robot has the same shape; the generalization to robots of dif-
ferent shapes would present no difficulty for the rest of the al-
gorithm.) From the tesselation we next compute a collection of
product cells. The k-fold product of the k (not necessarily dis-
tinct) polygons Pi, P;,, ..., P, is defined to be the locus of points
in configuration space for which the reference point of robot 1 lies

I 7
e 2 S K K
St) h o
s’ i ' ’ 1
’ i ’ . '
. : ™~ £’> ’A ‘. i
c(! ® 1 3 el 3 |
N N N
N ! N ! A !
. Nt !
N N N
Vb bl b3

Figure I: The 1-skeleton of a basic cell (the product of two trian-
gles).

in P;, the reference point of robot 2 lies in I, etc. We denote
this product by Q(P;,, Py, ..., P,)i it is a 2k-dimensional convex
region in Cspace. (The product operation is sometimes called the
Minkowski sum.)

Figure | shows a wire-frame drawing of the d4-dimensional
product cell @(Aabe, A123). The triangles Aabe and A123 are
both polygons in the tesselation T, and their product contains
all configuration points at which (the reference point of) robot |
lies inside Aabe and (the reference point of) robot 2 lies in A123.
The figure shows a projection of the l-skeleton of the product cell,
which is just the set of vertices and edges of the cell’s boundary.

For » polygons in T and k robots, we compute a product cell
for every possible choice of & (not necessarily distinct) polygons
from T we thus obtain n* product cells, which will be called basic
cells in the sequel. (The exponential space and time requirement
of the preprocessing phase can be seen explicitly here.) Note that
the basic cells are convex and pairwise disjoint, and that their
union B is a superset of the k-robot free space Fi. Since we have
so far ignored the inter-robot collision constraints, some cells in B
will contain some configuration points for which the robots overlap
(assuming k > 2).

2.2.2 Inter-robot constraints

Because the robots are polygonal, a particular pair of robots are
overlapping at a configuration point p € B il and only if p satis-
fies a certain boolean combination of a set of linear inequalities.
Furthermore, since the robots are convex, the boolean combina-
tion is simply a conjunction. To illustrate, consider the 2-robot
problem in which both robots are squares of width w, aligned
with the coordinate axes. The point p = (x1, 1,22, y2) in Cspace
denotes the configuration where the reference point of robot i is
at the position (x;,y;) in the workspace, i = 1,2. Assuming that
the Cspace parametrization is chosen so that both robots have
tlie same reference point (e.g. the lower-left corner), it is easy to
see that p corresponds to an overlap of the robots iff

(rr—2y S w)A(xz =21 S WA (y1—y2 S w)A (g2 =3 < w). (1)

If the robots are general convex polygons, the overlap condition
is also a conjunction of linear inequalities. In this more general
case, the appropriate inequalities may be computed by a sim-
ple variant of the obstacle-growing technique, in which robot 1is
considered fixed with its reference point at the origin, and the
boundary of robot 1 is “grown” by the houndary of robot 2.
This gives the projection of the Cspace region of overlap onto
the plane x; = 0,y = 0; by replacing g and yo with ry —
and yz — y1. respectively, in the resulting expressions, we gel a
description of the entire overlap region for robots 1 and 2.

If there are k > 2 robots, we get a set ol these inequalities

for each of the (Ié) possible pairs of robots. Let L;; denote the

set of inequalities arising from the overlap condition for robots i
and j. Then some overlap occurs at p € B iff

V

1<i<j<k

AL

leL;,

(2)

is true, where \/ and A denote disjunction and conjunction. re-
spectively.

It is helpful to think of the inequalities geometrically as half-
spaces in the 2k-dimensional conliguration space. A hall-space
nay be represented by a hyperplane and a sign couvention; e.g.
the first inequality in the example (1) above becomes the hyper-
plane given by the equation I (p) = x1(p) — x2(p) — w = 0. with
the convention that H(p) > 0 implies that pis a configuration free
of overlaps between robot 1 and robot 2.

2.2.3 Putting the constraints together

Ouce we have generated the set of basic cells and the appropriate
set of inter-robot constraint hyperplanes. it remains to combine
them into a cell decomposition of the k-robot free space I}. The
idea is to slice the collection of basic cells with each hyperplane
in turn. At each slicing step, any cell which intersects the current
hyperplane is removed from the collection and replaced with two
subcells, one lying on each side of the hyperplane. When the next
hyperplane slices the collection, these new cells may be subdivided
again. This process continues until each hyperplane has been
considered for each basic cell.

T'he result of this slicing process is a sct of convex cells, each of
which is sign-invariant with respect to the constraint hyperplanes.
That is, any two poiuts in a single cell both lie on the same side
of each hyperplane. Therefore, either a cell is a subset of [vee
space Fi or it contains only illegal poiuts. depending on the value
of expression (2) above for points in the cell. The set of [ree cells
constitutes the partition of free space in our cell decomposition.
It is straightforward to determine the adjacencies among these
cells, as described in the next section.

It can be shown that the complexity of the algorithim in most
cases is not increased greatly by the cell-slicing step. A con-
servative upper bound on the nwuber of subcells of each basic
cell which may be induced by the constraint hyperplanes is given
by the number of cells in the arrangement of those hyperplanes
in the 2k-dimensional configuration space; an upper bound on
this latter quantity is O(h?) for h hyperplanes in d dimensions
([I2de87]). A robot polygon with r vertices gives rise to O(r) con-
straint hyperplanes for each pair of robots. Therefore we can get
at most Of (l(Iz‘))M) subcells per basic cell in the worst case.
This reduces to O(A*) when r is considered a constant.

In practice. this cell subdivision factor is usually much
smaller. I the set of hyperplanes contains many pairs of par-
allel hyperplanes (as in the case of square robots), the number of
possible sign sequences is greatly reduced. For two square robots,
at most 9 subcells are possible. Also. a significant optimization
is to avoid slicing any cell which already contains either only free
configurations or only illegal ones. With this refinement. for ex-
ample, at most 5 subcells will be obtained for any basic cell in
the case of 2 square robots. This optimization also eusures that
all basic cells which are the product of polvgons whose mininum

{sb} x (1)

(e} x (13}

e} x (1) (b} x {1} .5 other 0-D faces (vertices)... (e} x (3}
Figure 2: Part of the incidence graph for the basic

cell ®(Aabe.A123). Notation: {-} x {-} denotes the prod-
uct of the indicated simplices; e.g. {abc} x {123} is the basic
cell @(Aabe, A123); {a} x {1} is the vertex al.

separation is greater than the diameter of a robot will not be
subdivided at all.

3 Implementation

We are implementing the planning algorithm described above for
the case of two robots for the purpose of testing various heuristic
algorithms for motion planning in RobotWorld. In this section
we briefly describe the data and control structures used, and dis-
cuss the practical considerations of applying the algorithm to the
RobotWorld environment.

The primary data structure for this algorithm is the represen-
tation of convex polytopes in the four-dimensional configuration
space. The slicing of a cell is in fact completely determined by
its 1-skeleton; however, since we need the 3-D facets for path
planning it is necessary to explicitly represent all the faces of all
dimensions. 0—4. For this we use a general incidence graph struc-
ture as described in {EdeS7]. This structure represents a polytope
in n dimensions as a directed acyclic graph, in which each node
represents a subface of some dimension 0 through n of the poly-
tope and there is an edge from a d-face f to a (d — 1)-face g if
and only if ¢ is part of the boundary of f. (This is similar to a
winged-edge structure, but no ordering information among the 0-
and 1-dimensional subfaces is maintained.) Figure 2 shows part of
the incidence graph which represents the basic cell depicted above
in figure . (The complete incidence graph for this polytope has 49
nodes and 126 edges.)

With this representation, the slicing of a cell with a hy-
perplane is performed by a simple recursive algorithm which
uses the l-skeleton of the polytope as the base case. For
a (3-dimensional) hyperplane H which passes through a 4-
dimensional polytope P, we need to be able to compute the two
polytopes Py and Py which satisfy

o 7, and P, lie on opposite sides of H;
e P{UP, = P;and

o PN P, = F, where F is a 3-dimensional convex polytope
lying in ‘H.

F is the common facet shared by P and P,. The main obser-
vation needed to construct the incidence graphs for Py and Py

(b) Recursive call on 2-D face J

(a) 3-D polytope and 2-D hyperplane

{c) Slicing a 1-D face -~
base case for recursion

Figure 3: Recursive cell slicing.

is that for every d-face f of P which has a nou-null intersection
with H, fN'H is a (d — 1)-face of the shaved facet F. The cell-
slicing function is invoked recursively to compute these intersec-
tions, and the appropriate subfaces of 7; and P, are constructed
as the function returns up the recursive call tree. This recursive
process is illustrated in figure 3, which depicts the slicing of 2 3-D
polytope with a 2-D hyperplane.

The adjacency relation between cells is determined dur-
ing cell construction. When the basic cells are set up, their
adjacencies are known from the adjacencies of the polygons
in the underlying tesselation.
the cell @(Pi,. Piyv.... [y} are all possible cells of the form
R Py Py Aiy Pipys ., P, where A is a polygon ad-
jacent to P; in the tesselation and j € {1....,k}. Polygons are
considered adjacent in the tesselation if and only if they share
a common edge; thus we avoid computing pat hs which involve
moving a robot across a polygon vertex. (learly this gives all
adjacencies across hasic cell subfaces of codimension I.

The basic cells adjacent to

The control structure of the algorithm propagates basic cell
construction from a cell 1o its neighbors in a depth-first style, and
in so doing it automatically fills in these preliminary adjacencies
among the basic cells. When a cell gets split by a hyperplane,
the adjacency links which need to be updated in the cell network
are also easy to determine: wherever a cell is split, we get a new
adjacency between the two new subcells. and the old cell's adja-
cencies are inherited by each new cell wherever the new cell con-
tains at least a section (of full rank) of the shared facet to which
the adjacency corresponds. Again, the implementation performs
the slicing of cells in a depth-first order for each hyperplane, and
it updates the adjacencies as it proceeds. After the entire cell
network is created, the illegal cells and all adjacency links con-
nected to them are removed. The resulting network is the cell
decomposition we are after.

The network itself is simply an undirected graph. Each node

Figure 4: Configurations of Robot World.

in the graph is uniquely identified by an ordered pair of poly-
gons (P}, P;) together with a sign sequence. The node identified
by such an index pair is the one corresponding to the unique
subcell of the basic cell (1%, F;) satisfying the given signs with
respect to the constraint hyperplanes. During the construction
of the network, it is convenient to build an indexing structure
which efficiently perforins this mapping from index pairs to cell
nodes. This lookup table is used in answering particular path
queries in the completed cell network. First the index pairs for
the start and goal points are determined, by using a planar point
location algorithm in the tesselation and by comparing the points
to the hyperplanes. Then the cell nodes for those index pairs are
retrieved from the table. A depth-first search is then initiated
from the start node to the goal node. The search is guided by a
heuristic which searches from one cell to adjacent cells in order of
increasing difference hetween the angle to tlie neighbor cell and
the angle to the goal cell. This heuristic tends to encourage the
discovery of the most direct path through the network from start
to finish (although it doesn’t guarantee that the globally shortest
path will be found). If a path in the cell network is found, it is con-
verted to paths for the robots using the centroids of shared faces
along the path as via points, as discussed in section 2.1 above. A
path, if found, will thus be piecewise linear.

One complication arises in applying this algorithm to the
RobotWorld environment. This is that each robot has attached
to it a flexible cable which may interfere with the motion of other
robots. The robots thewselves are otherwise well approximated
by squares. One heuristic means of dealing with this problem is to
simply omit one of the overlap conditions for the two robots, say
for example the condition (y; — y1 < w). Then any configuration
in which the robots overlap in 2 and for which y; — y, < w will
be deemed illegal (see figure 4). The effect of this is to leave a
“column™ of width w above robot 1 and helow robot 2 in which
the cables may safely trail along. The cables then just need to
be placed so as Lo extend vertically to the robots from opposite
sides of the platten. (This of course means thal the search space
is reduced. and there will exist solvable instances for whicl the
algorithm fails to find a path. ITowever, the exact kinematics of
the cables are far from simple, and a truly complete algorithm
which takes them into account is hard to imagine.)

4 Conclusion

The algorithm presented in this paper gives a complete solution
to the motion coordination problem of finding collision-free paths
for multiple mobile robots moving in a polygonal environment.
The algorithin works for any set of & robots which have convex
polygonal boundaries. The approach is to pre-compute a cell de-
composition of free space, and search for a path in the resulting

adjacency graph. The preprocessing phase has 4 major steps:
1. Compute the free space Fy of a single robot.
2. Partition F into a set T of polygons.
3. Build a network of k-fold product cells.

4. Refine the cells of the network into subcells which are sign-
invariant with respect to the inter-robot constraint hyper-
planes.

If n denotes the size of the environment description (e.g. n is the
number of vertices in the obstacle polygons). it can be shown that
the free space Fy computed in step 1 has O(n) size (see [LS87)).
This implies in turn that the tesselation T computed in step 2
has O(n) polygons (an upper hound is the number of triangles
in a triangulation, which is O(n)). Step 3 therefore yields O(n*)
product cells. If the complexity r of the robot polygons is con-
sidered a constant, then step 4 increases the number of cells by a
factor C(k) which depends only on &, and so the algorithm over-
all takes O(C(k)n*) time and space. An upper bound on C'(k)
is O(k*); however in practice it is generally much smaller. Since
the number of degrees of freedom of the problem is actually 2k,
this complexity is quite reasonable for a complete algorithm.

Once the preprocessing of a given set of obstacles is com-
pleted, the resulting cell network may be used to answer any
number of path-finding queries for robots moving amidst those ob-
stacles. Thus the algorithm is particularly useful for applications
in which the obstacle set changes only infrequently. This accords
well with the offline/online distinction made in many problems
in robotics. Also, the average performance of the motion planner
may be improved by first applying a heuristic algorithm for find-
ing paths quickly to a given problem instance. In this setting, the
complete algorithm is invoked only when the heuristic fails to find
a path.

The paths generated for the robots by this algorithm are
piecewise linear. If smoother paths are desired, various path-
refinement techniques may be used to adjust the trajectories as a
post-processing step.

References

[BLL89] Jérome Barraquand, Bruno Langlois, and Jean-Claude
Latombe. Robot motion planning with many degrees of
freedom and dynamic constraints. In 5th International
Symposium on Robotics Rescarch, pages 74-83. Tokyo,
Japan, August 1989. [ELL.

Stephen J. Buckley. Fast motion planning for multiple
moving robots. In International Conference on Robotics
and Auwlomation, pages 322-326, Scottsdale, Arizona,
May 19%9. IEEE.

lterbert Edelsbrunner. Algorithms in Combinatorial
Geometry. Springer-Verlag, Berlin Heidclberg, 1987.
Michacl Erdmann and Tomés Lozano-Pérez. On multi-
ple moving objects. Algorithmica, 2:477-521, 1987.

J. E. Hopcroft, Jacob T. Schwartz, and Micha Sharir.
On the complexity of motion planning for multiple inde-
pendent objects; PSPACE-hardness of the “warehouse-
man’s problem™. [nternational Journal of Robotics Re-
search, 3(4):76 8%, 1984,

[Bucs9]

[Ede87]

[ELPST

(11SS84]

[LPS3)

(LS87]

[0SY83]

[PS85]

[Sch&7]

[Shag9]

[SS83)

[$S88]

[Whis5]

[Yap&T]

Tomas Lozano-Pérez. Spatial planning: A configura-
tion space approach. IEEE Transactions on Computers,
32(2):108-120, February 1983.

Daniel Leven and Micha Sharir. Planning a purely
translational motion for a convex object. Discrete and
Computational Geomelry, 2(1):9-31, 1987.

Colm O'Diinlaing, Micha Sharir, and Chee-Keng Yap.
Retraction: A new approach to motion planning. In 15th
Symposium on the Theory of Computing. ACM, 1983,
Frauco P. Preparata and Michael Tan Shamos. Com-
putational Geometry: an Introduction. Springer-Verlag,
New York, 1985.

V. Scheinman. Robotworld: A multiple robot vision
guided assembly system. In 3rd International Sympo-
sium on Robotics Research, 1987.

Micha Sharir. Algorithmic motion planning in robotics.
Compulcr, pages 9-19, March 1989.

Jacob T. Schwartz and Micha Sharir. On the piano
movers’ problem: ii. general techniques for computing
topological properties of real algebraic manifolds. Ad-
vanccs in Applied Mathematics, 1:298 351, 1983.

Micha Sharir and Shmuel Sifrony. Coordinated mo-
tion planuning for two independent robots. In 4th Sym-
posium on Computational Geometry, pages 319-328.
ACM. 1988.

Sue II. Whitesides. Computational geometry and mo-
tion planning. In G. T. Toussaint, editor, Com-
pulational Geomelry, pages 377-427. Elsevier Science
(North-Ilolland), 1985.

Chee-Keng Yap. Algorithmic motion planning. In Ja-
cob T. Schwartz and Clee-Keng Yap, editors, Advances
in Robotics, chaptler 3, pages 95-143. Lawrence Erlbaum
Associates, 1987.

13

