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Abstract

In the study of multifingered robot hands, the process of manipulat-
ing an object from one grasp configuration to another is called dextrous
manipulation. Motion planning for dextrous manipulation amounts to
generating a sequence of trajectories of the fingers so that a final grasp
configuration, through the effect of contact constraints, can be reached
from an initial grasp configuration. In this paper, we formulate the mo-
tion planning problem for dextrous manipulation and in a forthcoming
paper we will construct solutions based on this formulation. First, dex-
trous manipulation is decomposed into (i) coordinated manipulation;
(ii) rolling motion; (iii) sliding motion and (iv) finger relocation. Then,
we develop motion constraints for each of the manipulation modes, and
show that for finger motions that satisfy these constraints these exists
a well defined lift to the total space which links two contact configu-
rations. Special to this paper is the incorporation of nonholonomic as
well as holonomic, unilateral as well as bilateral constraints into motion
planning.

1 Introduction

In the study of multifingered robot hands, the procedure of adjust-
ing grasp configurations without the risk of dropping the object
is called dextrous manipulation. In order to perform such a ma-
nipulation, the robot hand has to rely on rolling contact, sliding
contact as well as on finger relocation. Since rolling constraint 18 in
general non-holonomic, this makes a hand manipulation system an
non-integrable system. Note that the notion of non-integrability has
not been seen in the study of a single manipulator system. In other
words, a single manipulator system is integrable, while a robot hand
system is not, if we were to exploit the advantages associated with
dextrous manipulation.

The study of dextrous ip

lation is ¢ licated not sim-

ply because a number of finger manipulators are involved ([Ker85],
[LHS88]) but rather because of the non-integrability nature of the
system. As a matter fact, approaches developed for studying inte-
grable systems do not generalize easily to a non-integrable system.
For example, motion planning for a rigid bedy under rolling con-
straints (i.e., non-holonomic) is very different from and much more
difficult than motion planning under sliding constraints (i.e., holo-
nomic ) (see [LC89]).

The aim of this paper is to understand the dextrous ma-
nipulation problem. An outline of the paper is as follows: First,

we formulate precisely what do we mean by dextrous manipulation.
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Then, we will decompose dextrous manipulation into the following
manipulation modes: (a) Coordinated manipulation; (b) Rolling mo-
tion; (c) Skiding motion and (d) Finger relocation. For each of the
manipulation modes appropriate constraints will be imposed. We
then show that, for finger trajectories which satisfy these constraints
the trajectory of the object is well defined. Our hope is to construct
a set of trajectories of the fingers that links two grasp configurations.
This will be the goal of the part II of the paper.

2. The Problem Statement

Consider the hand manipulation system shown in Figure 1. We as-

sume that each finger contacts the object over its most distal link

Figure 1: A hand manipulation system

only. Thus, by attaching a set of coordinate frames to the respective
bodies and a reference frame to the hand palm, the configuration
space of the object relative to the palm can be identified with a copy
of the Euclidean group, denoted by SE,(3), and similarly the con-
figuration space of finger i, = 1,..k, by SE,(3), where k denotes the
number of fingers. We further assume that (A1) the boundaries of
the object and of the fingers are smooth, and (A2) the relative cur-

vature form between the object and finger i,i = 1, .k, is invertable.

Definition 2.1 The configuration space, P, of the hand manipula-
tion system is

P = SE,(3) X SE1(3) X ... x SEx(3)

where a configuration z € P is of the form z = (go,91....9x), with
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go € SEo(3),9; € SEi(3). A point z in I is also called a grasp

configuration.

As a consequence of this definition, the following possibilities exist
for a given grasp configuration z € P: (1) none of the fingers is in
contact with the object (i.e., a null grasp ), (2) a subgroup of the
fingers are in contact with the object (i.e., this may correspond to
finger relocation ) and (3) every finger is in contact with the ob-
ject. We will restrict our attentions to a subset of P where overlaps
between any two bodies do not occur ([Can88]). Note that noth-
ing has been said about the nature of the grasp (e.g., force closure
condition, etc.).

Let G = SE(3) denote the group of rigid motion of R3. G

acts on P by right translation, i.e, there exists a map
®:PxG— P:(z,h)—> (goh,q1h, ...qxh).

Physically, this corresponds to a rigid motion & on the entire system
by the base (or the macro-) manipulator where the hand system is
attached to. Clearly, for each h # e(e is the identity element of G),
the map &, : P — P : z — &(z,h) is one-to-one(i.e., the action
is free ). Thus, we can define an equivalence relation ~ on P as
follows: 2y ~ 2y if there ezists a h € G such that 2z, = z;h. In other
words, two grasp configurations are equivalent if one is related to
the other by a rigid motion. We let P/G denote the space obtaind
from P under this equivalence relation. A point [z] in P/G is of the
form [2] = 2G. P/G is called the space of shapes and there exists a
natural projection from P to P/G, given by

T:P — P/G:z2+ 2G.

7 is seen to be onto. The triplet (P,G, P/G) is called a principal
G—bundle. P is sometimes called the total space, P/G the base space

and G the structure group.

Proposition 2.1 Let M = SE,(3) x .. x SE(3) denote the con-
figuration space of the fingers. Then, the space of shapes, P/G, is
homeomorphic to M.

Proof. Let [z] = 2G = (g,, 91, ...9x)G be an element in P/G. Then,
setting b = g;! we see that 2G ~ (e,19;,..0x9;1)G. We call
[2] = (e,91,--9x)G the unique representative of [z]. For if [z} and
[2'] are two different points in P/G. Then, [2z] # [2'] if and only
if [5] # [#] if and only if (g1,...9¢) # (g1,---gk)- We define the
homeomorphism f by

f:P/G— M : 2G> (g1,..9k), where zG ~ (e, 01, ..9x)G.

This construction completes the proof. ]
This identification of P/G with M corresponds to setting
the palm frame initially at the location of the object frame.
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Since finger motion can be controlled by actuators located

at the finger joints, M is also called the control space. A trajectory

Figure 2: A global picture of dextrous manipulation

in M can be realized by specifying appropriate torque inputs. On
the other hand, if a grasp is both stable (or force closure) and ma-
nipulable ([LHS88]) then the object motion can be effected by the
finger motion. The setup of the problem is as follows (see Figure 2).

Problem Statement: Given two grasp configurations 2y, z; in P,
construct an gdmissible piecewise continuous curve v(t),t € [0,/],
in M such that (1) v can be lifted to a curve o in P, i.e., n(a) =y
and a connects z; t0 23, i.e., a(0) = z; and o(ty) = 2.

In the rest of the paper, we will define the precise meaning
of a curve v in M being admissible, and then we show that if 7 is
admissible, then, starting from an initial grasp configuration, there
exists an unique lift & of v to P. The construction of such an curve is
under current investigation. A somewhat simplified answer is given
in [LC89).

We now define some terminologies that will be needed and
refer the readers to ({[LCS89], [LHS88], [Mon86]) for further refer-
ences.

i
z

Notation 2.1 Let (vf,v},v}) and (wi, w}, wi) denote the compo-
nents of the instantaneous contact velocity of finger i relative to the

object, and 1; be the angle of contact.

Definition 2.2 We say that finger i contacts the object by (a) fized
point of contact if v} = v} = v} = 0 and wi = wj, = 0; (b) rolling
contact if vi = vl = vi = 0 and wi = 0 and (c) sliding contact if
v =0 and wi = w) = wi = 0.

Notation 2.2 (v}, w},)' € R® denotes the velocity vector of the
object, and £y, = ('u‘ﬁ'p, w; ,p)‘ € RS the velocity vector of finger
i, and &5 = (&% --Efap)t € R%*. K; € R® denotes the friction
cone of ith contact, and K = K; @ ... ® K& the force cone of the
hand. coi € R3 (or cs; € R3) denotes the position vector of the ith
contact point relative to the object (or finger i) and p,; € R? (or
L1 chy)t € R3F
and p_ = (ply,..-pit)s and etc. k = {1,...k}. Let m C k be a subset
of k, then k\m denotes its complement.

psi € R?) the coordinates of c,; (or of ¢g;). ¢, = (¢




The following relation exists for contact type (a) and (b)

d

where G is the grip Jacobian ([LHS88]) and J is the pseudo hand-
Jacobian. G depends ¢, and we write G = G(¢,) = G(p,) to em-

Vo,p ] - jffyp

Wo,p

phasize this dependence, and similarly, J depends on cs-

Definition 2.3 A set of contact points ¢, is said to satisfy the con-
dition of a grasp if G(¢,)(K) = R®.

Notation 2.3 M,; € R?%? denotes the metric form of the object
at the ith point of contact, Ko € R2X? the curvature form, and
T,; € RX2 the "torsion” form. Similarly, for finger i, My; denotes
the metric form, and etc. (See [Mon86] for more detail ). When the
grasp condition is satisfied we let F = (GGYH™'GJ = F(I_’a’?j’ P).

The following set of equations that describe the kinematics of con-
tact will be called the Montana’s Equations ([Mon86]).

. —- - SN —w‘ -, ‘U;

Poi = Mo.-l(Ilo:'+ I\fi) 1([ w;y ] - le,'[ v;-l ]), (1)
N —wt i

pri = Mp Ay (Kot If,;)"([ o ] “"m‘[ w D @)

¥ = Wi+ ToiMoiboi + TtiMyigis 3)

v =0, )

where Ky = Ay, KfiAy, is the curvature form of finger i seen by
the object.
3 Classification of Motion Constraints

Qo CUilashllitauigil Ars oy s

In this section, we classify the set of basic constraints on finger
motion in M. These include (i) constraints for collision avoidance
and (ii) constraints by the kinematic structures of the fingers. These
constraints are unilateral and holonomic and thus can be easily dealt
with.

We assume that geometries of the fingers and the object are
known, and they satisfy assumptions (A1) and (A2). Furthermore,
parameterizations of the fingers/object are given.

A. Constraints for Collision Avoidance

During the course of manipulation, collisions between links
of all k-fingers should be prevented. Since each finger is represented
by its last link, the constraints can be formulated directly in terms of
the finger configuration variables. Consider the hand manipulation
system shown in Figure 1. Let "F;”,i € k, stand for finger i. Let
d:R3 x R® — R,d%z,y) = X, Jzi — uil? be the Euclidean 2-
norm. We define the distance function of 7 F;” with PF", g # 1 as

follows

d(F.‘,Fj) = min
z € 5;,7' cm;
yeShlem;

()

d(grjpT, grip¥)s

R ol

where g,; .2 B R, jpz +7.;p. According to Canny ([Can88], Ch. 2),
for given features of finger i and j, d(F;, F;) defines a function on
the configuration variables of finger i and finger j. Without loss of
generality, we will write, that

d(F;,F;): M — R. (6)

For computational advantages, Canny used quaterion coordinates

for the orientation space SO(3). But, conversions between quaterion

coordinates and orientation matrices are rather straightforward.

Definition 2.4 Collision between finger i and finger j can be pre-
vented if and only if

d(F;, F;) > 0, @)

The subspace of M where finger i is collision free with finger j is
— Jay

denoted by d(F;, F;)71((0,00)) = {(gr1p--Grkp) € M | d(F;. F;) >

0}, and the constraint subspace for collision avoidance of all k-fingers

is the intersection:

() (R, F) (0 00)) € M. ®)

i<j

Remark: It is straightforward, using the kinematic functions of the
fingers, to formulate the constraints for collision avoidance between
links of all k-fingers, where each finger has more than one link.

B. Constraints by Finger Kinematics

The second type of basic constraint is the constraint due to
the finger kinematic structures. Since the last link is connected to
the hand palm by n; links the set of reachable configurations by
the finger is a compact submanifold Q; of SE;(3). As was shown in
[Can88], Q; is a semi-algebraic set, and can be expressed by a set of

inequalities in terms of the configuration variables, gy p:

Qi = {9+ip € SEi(3) : f(grip) 2 0}- 9

The subspace of M where finger kinematic constraints is
satisfied is the product:

(@1 X .- X Qx) C M.

Finally, the subspace of M, where all the constraints dis-

cussed in this section are satisfied is given by

&

Q0 2 {nicid(F;, F5)(0,00) } (@1 x - X Qu)} € M. (10)

4 The Basic Manipulation Modes

We will decompose dextrous manipulation into the following ma-
nipulation modes: (C) Coordinated manipulation; (D) Rolling mo-
tion; (E) Sliding motion and (F) Finger relocation . Let [0,t4] be
the time interval it takes to reach from the initial state to the final
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state. [0,t] is divided into the union of successive sub-intervals, i.e.,
[0,25] = UR= [tis ti41], 0 = to < 1 < ... < t,, = #y, such that at each
sub-interval [t;,2;41] the finger motion is in one of the manipulation
modes.
C. Coordinated Manipulation

Coordinated manipulation by a multifingered robot hand has
been studied extensively in [LHS88]. It was shown that the fingers
can be controlled to move in a coordinated fashion so that the object

can be manipulated from one configuration to another. We see that,
in addition to satisfying the generic types of constraints discussed in
Section 3, the finger motion must also guarantee that the points of
contact can in fact stay in contact with the body. We shall now for-
mulate exactly the constraints on finger trajectories for coordinated
manipulation mode.

Consider an initial state of the hand manipulation system,
given by 2 = (-90»P(0)’51,p(0)) € P. Let the initial contact points
be ¢, € R%* and ¢; € R3*, respectively, and assume that ¢, form a
grasp.

Let g, (t) = (9r1(), - 9rkp(t)) € M, t € [0,11], De a set
of trajectories of the fingers. The velocity vector of the fingers are
denoted by &5,p = (£%; 5y €41 ). We wish to impose constraints on
the finger velocity vector, and therefore the finger trajectories so that
coordinated manipulation is well defined. Since the set of contact
points initially satisfies the grasp condition, the object velocity can

be expressed in terms of the finger velocity as

] = Flenep) €1 a1

Consequently, the rotational components of the contact velocity can
be expressed (implicitly ) as a function of the finger velocity. This
is given by (see [LCS89)] for detail).

w}
w;’ = —vA.l,'.Alﬁ’n-w,;'P + Ari,owo,p(fl,P)v i€k, (12)
w;
and
P =wi, iek (13)

On the other hand, the points of contact (p.:,py;) evolve as a func-
tion of the relative rotational velocity according to Montana’s equa-
tions.

Poi = M (Koi + Ii’/.‘)_l[ —wl?“ ], (14)

pfﬁ = Mf_l»lA,b;(I\’,,.‘ + fi'ﬁ)_l [ _wu!y ] (15)

Equations (11) ~ (15) constitute a system of differential equations
with algebraic constraints. The exogenous input to the system is
the velocity vector of the fingers.

Definition 2.5 (Coordinated Manipulation) We say that a set of

finger trajectories g_”(t) € M, t € [0,t,), is admissible for coordi-
if the relative 1 ity (wh, wi),i € k
solved from the above system of differential equations with algebraic

lats tats i 1,

nated

constraints is identically zero, for allt € [0,t,].

When a set of finger trajectories, g f,p(t)’ satisfies the above admis-
siblity condition, its lift to the total space P is unqiuely defined. To
define the lift of a curve g f,»(t)’ we only need to know the trajectory
of the object from that of the fingers.

By the admissiblity condition of the above definition, we
have poi(t) = pyi(t) = 0. Thus, c, and cy; are all constant. The
relation between the object trajectory and the finger trajectory is

9op(t)Coi = grip(t)esi, VE € [0,4],i € k

Since ¢, € R% forms a grasp, the object trajectory variable Go,p(t)
can be solved uniquely from the above set of equations. Let the
solution be g3 ,(t),t € [0,t,], and which defines the lift of go’p(t).
D. Rolling Motion

An efficient manipulation mode for effecting motion of both
the object and contact coordinates is rolling. Cole et al ([CHS88])
show that when the initial contact points ¢, is properly chosen then
the object can be manipulated with pure rolling constraints. We
formulate the admissiblity condition on finger trajectories for rolling
motion as follows:

Consider an initial state of the hand manipulation system,
with initial contact points ¢,(0) (or p,(0)) and ¢4(0) (or 12!(0)),
respectively. Assume that ¢,(0) (or p,(0)) forms a grasp.

Let g!,p(t) € M, t € [0,t], be aset of finger trajectories and
consider the following system of differential equations with algebraic
constraints (i € k):

Yop | _

Wop ] = F(Bo(t)»!’f(t)vﬂ) {f,py

vy A

w% = — Ay A piwrip + AL w0 (€5 p),
w!

z

16
Poi = M (Ko +1‘r,.~)-'[ o

-w,

[
Bri = M7 Ay, (Koi + i(ﬂ)_l[ _wu.-}"
T

J

Here, the first two equations are algebraic, and £, is considered as

= wi + ToiMoipoi + Ty Myipyi

an input term. The initial conditions are given by the initial state
of the hand system. Let p,;(t) and P1i(t),1 € k, be the solutions of
(16), and c,:(2) the corresponding point of contact.

Definition 2.6 ( Rolling Motion) We say that a set of finger tra-
Jectories gs,,(t) € M, t € [0,t,], constitutes a set of admissible tra-
Jectories for rolling motion if: (i) wi,i € k, from (1 6) is identically
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zero for all t € [0,11]; and (i) the set of contact points ¢ (t) € R3*
forms a grasp for allt € [0,1,].

The solution of the object trajectory from the above system of dif-
ferential equations with algebraic constraints defines the lift of the
base curve 5fm(t)’t € [0,%,].

E. Sliding Motion

When a finger or a group of m fingers ( 1 < m < k) are com-
manded to slide along the object surface, the remaining (non-sliding)
fingers, together with contact wrenches from the sliding fingers con-
strained to the boundaries of the friction cones, should be able to
held the object in the same configuration. The control algorithm
presented in [LHS88| can be modified for this purpose. Constraint
formulation for sliding motion is given here.

Assume that gravity is the only external force to be balanced
during the course of sliding. Let §, denote the gravity vector relative
to Cp, and Ad;;’,’(_ﬁ,‘,, 0)* is then the equivalent wrench on the object
relative to C,,.

Let 1 < m < k be the number of fingers to be slid simulta-
neously. Let 7, = {(x{,)i=P, 7}, € k} define a permutation of m
fingers to be slid. For example, if 73 = {1,3,4}, then finger 1, 3
and 4 will be slid simultaneously. Note that for a given m, there are

EY_ __m
m | = TEmym

can possibly slide. Thus, we have to perform (2* — 1) tests for all

different ways that a total number of m fingers

possible sliding motions.

Consider an initial state of the hand manipulation system
given by (go,p(O),gf’p(O)) € P, assume that the corresponding con-
tact points c,(0) forms a grasp. Let gy ,(2) € M, t € [0,1], be a set
of trajectories of the fingers such that

gri,p(t) = gri,p(o)s Vie k\”m~

In other words, the trajectories of the non-sliding fingers stay con-

stant. Let

GENTm 2 Y Gi(E:)

iek\rm
denote the set of contact wrenches from the nonsliding fingers, and

an

Yien,, Gi(0K;) denote the set of contact wrenches from the sliding
fingers, where OK; stands for the boundary of K;. Then, the ob-
ject can be held stationary under gravity force while simultaneously

sliding fingers in 7., if
Ad;;;[ 9(;’ ] € G(K)\Tm + ; Gi(9K;). (18)

JE€ETM

With the object configuration stays constant, the velocity of
the sliding fingers relative to the object is simply the velocity of the

fingers, i.e.,
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v
v':" Ay, O
v | _ ¥i Vrs .

= P | Ad - P Vi€ Tm. 19
w'? [ 0 A‘IJ.‘ ] yf;l,n'[ Wrip :|’ m ( )
w;
w}

If the relative rotational velocity is zero, the contact coordinates for

the sliding fingers evolve according to

N . i .
Poi = ~MZ (Koi+ K/-')“Kf.'[ Zf ], Vi € T,
v

. - . 20
Pri = M7t Ay (Koi + I(]i)_lKoi[ Y | Vig tm, (20)

z
t]
Yy

[A—

¥i = ToiMoipoi + TsiMyipsi, Vi€ mp.
(19) and (20) together constitute a system of differential

equations with algebraic constraints, and is denoted by (*).

Definition 2.7 (Sliding Motion) We say that a set of finger trajec-
tories g fyp(t) € M, t € [0,1], constitutes a set of admissible trajec-
tories for sliding motion if: (i) (wi,wh, wi) and v} defined by (*)
are identically zero for allt € [0,1] and i € Tp; (i) (18) is satisfied
for allt € [0,,], and (i#) the set of contact points ¢,(t) € R®* forms
a grasp for allt € [0,1,).

The object motion is constant during the course of sliding motion
and this defines the lift.

F. Finger Relocation

Finally, we conclude this section by defining constraints for
finger relocation. In a finger relocation mode, a group of m fingers
(1 < m < k) are allowed to break contacts with the object and
they will be positioned at other locations, provided that the set of
contact points by the remaining fingers still forms a grasp.

Again, let the initial state of the hand manipulation system
be (Ej'p([)),go,,,(o)) € P and let 7, be defined as before.
Definition 2.8 (Finger Relocation) We say that a set of finger tra-
jectories gf’p(t) € M, t € [0,t1], such that g.ip(t) = grip(0),Vi €
E\Tm constitutes a set of admissible trajectories for finger relocation
if

G(K)\rm = R®. (21)
In other words, the set of contact points by the remaining fingers

still forms a grasp.

The object motion is again constant and the lift is defined.

5. Conclusions

In this paper, we have formulated the dextrous manipulation prob-
lem for a robot hand. The configuration space of the system is
defined and a bundle picture which explains how dextrous manipu.-

lation would work is given. On the other hand, we have to confess




that the admissiblity conditions defined here are rather complicated

and we are still in the process of simplifying them. Fortunately,

some very elegant results have been obtained in [LC89].
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