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Abstract: In robotics, kinodynamic planning at-
tempts to solve a motion problem subject to si-
multaneous kinematic and dynamic constraints.
We consider the following problem: given a robot
system, find a minimal-time trajectory from a
start position and velocity to a goal position and
velocity, while avoiding obstacles and respecting
dynamic constraints on velocity and acceleration.
We consider the simplified case of a point mass un-
der Newtonian mechanics, together with velocity
and acceleration bounds. The point must be flown
from a start to a goal, amidst polyhedral obstacles
in 2D or 3D. While exact solutions to this prob-
lem are not known, we provide the first provably
good approximation algorithm, and show that it
runs in polynomial time.

1 Introduction

The kinodynamic planning problem is to synthe-
size a robot motion subject to simultaneous kine-
matic constraints (such as avoiding obstacles) and
dynamic constraints (such as modulus bounds on
velocity, acceleration, and force). A kinodynamic
solution is a mapping from time to generalized
forces. The resulting motion is governed by a
dynamics equation. In robotics, a long-standing
open problem is to synthesize time-optimal kino-
dynamic solutions, by which we mean a solution
that requires minimal time and respects the kino-
dynamic constraints. While there has been a great
deal of work on this problem in the robotics com-
munity, with the exception of the one-dimensional
case, there are no exact algorithms. Among the
many proposed approximate or heuristic tech-
niques, there exist no bounds on the goodness of
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the resulting solutions, or on the time-complexity
of the algorithms. We consider the restricted sit-
uation of particle dynamics, and provide a prov-
ably good approximation algorithm for the 2- and
3-dimensional cases. Roughly speaking, we show
that if there exists a “safe” optimal-time kinody-
namic solution requiring time ¢, then we can find a
“near-optimal” solution that requires time (1-+e€)t.
Furthermore, the running time of our algorithm is
polynomial in the both in the closeness of the ap-
proximation % and in the geometric complexity.
(This is true even in 3 dimensions, where com-
putation of an exact solution can be shown to be
NP-hard). These bounds on solution accuracy
and running time are the first that have been ob-
tained for 2D and 3D optimal kinodynamic plan-
ning, which has been an open problem in compu-
tational robotics for over ten years. Finally, we
believe that our algorithm is simple enough that
it could be implemented, and might well extend
to robot systems with full dynamics.

2 Kinodynamic Motion
Planning

Kinodynamic planring attempts to solve a mo-
tion problem subject to simultaneous kinematic
and dynamic constraints. We wish to consider the
following problem. A point mass in ®¢ (d = 2,3)
must be moved from a start position and veloc-
ity s = (s,8) to a goal position and velocity
g = (9,9). In the course of the motion, it must
avoid a set of polyhedral obstacles: these are the
kinematic constraints. The point is commanded
to move by applying forces (or equivalently, com-
manding accelerations). The corresponding mo-
tion is governed by Newtonian dynamics. How-



ever, there are upper bounds on the magnitude of

the commanded accelerations.  These hounds are
given by an Le.-norm: for all times ¢, the acceler-

ation a(t) is bounded by the inequality
[a(t)leo < @mas- (1)
In addition, we have velocity bounds that the
solution must respect. For a smooth path p, we
must ensure that
Eqgs. (1) and (2) are called dynamic constraints.

We will denote our configuration space R4 by
C, and its phase space by T'C. Phase space TC is
isomorphic to 24 and a point in T'C is a (position,
velocity) pair such as g or s.

The commanded acceleration is a map a :
[0,b] — R4 for a closed interval [0,b]. The path p
corresponding to a is its second integral subject to
the initial position and velocity s, and the trajec-
tory I for a and s is the mapping I' : [0,b] » TC
taking a time ¢ to (p(t), p(t)). Thus p is the time
derivative of p, and a = p.

Let us assume the polyhedral obstacles are in-
put as an arrangement £ with n vertices. Free
spaceis the complement of these obstacles. A gen-
eral kinodynamic planning problem, then, is a tu-
ple (£,5,8, @mazs Umaz). We assume that the set
of free configurations is bounded by a square of
side length [.

A solution to the kinodynamic planning prob-
lem is a suitable encoding of the acceleration map
a such that I'(0) = s, I'(b) = g, and T obeys the
kinematic and dynamic constraints. That is, p
avoids all obstacles, p respects (2), and a respects
(1)
The time for a solution a is simply b. The op-
timal kinodynamic planning problem is to find a
kinodynamic solution with minimal time.

However, the theoretically optimal solution may
still be unrealizable by a physical robot, (even if it
is a point!) This is because robot control systems
cannot accurately navigate through tight obstacle
channels at high speeds. We would like to take
this constraint into account in our analysis, in or-
der to supply a result that is not only theoretically
interesting, but also perhaps of practical value.
Thus we define the notion of a 8, -safe kinodynamic

solution. The intuition behind such solutions is
that they avoid obstacles by a safety margin §,.

Furthermore, this safety margin is an affine func-
tion of the trajectory speed. We choose the safety
margin a priori using two positive scalars ¢; and
¢o. One may think of this choice as corresponding
to how accurately the dynamical system can con-
trol its energy consumption. This variation spec-
ifies a tube about the safe path that must remain

obstacle-free. We call this tube a §,(c1, co)-tube;
it grows linearly in size with speed.

Formally, a 6,-safe kinodynamic solution has
the property that for all times ¢ in [0, 5], there
exists a ball about p(t) in free space of radius
8,(t) = a|p(2)| + co. (Here “ball” is used in a
topological sense: i.e., its shape depends on the
metric being used.)

Now, for fixed ¢;, cg, consider the class of all
§,-safe kinodynamic solutions. We define an op-
timal é,-safe kinodynamic solution to be a §,-safe
solution whose time is minimal in the class of §,-
safe solutions. We will henceforth abbreviate this
to “optimal safe kinodynamic solution” since &,-
safety is the only type we consider here.

Finally, we define an approzimate optimal safe
solution T'y to be a kinodynamic solution which
is “near-optimal” in time, and “also safe”. By
“near optimal”, we mean that if the optimal safe
solution I' takes time b, the time t, required by
I'y is bounded above by (1 + €)b. By “also safe”,
we mean nearly §,-safe: specifically, that the po-
sition component p, of T, lies in an obstacle-free
safety tube 6,(c},cp) for constants ¢}, cq, where
cp = (1 — €)cp and ¢f = (1 — €)c;. Note that 6,-
safety is actually a mized kinematic and dynamic
constraint; it is an example of a kinodynamic con-
straint that is neither purely kinematic nor purely
dynamic.

2.1 Statement of Results

In this paper, we assume the workspace has
unit diameter (I 1). We describe a prov-
ably good approximation algorithm for the op-
timal safe kinodynamic planning problem X =
(€,8, 8, %mazs Vmaz, €1, €0, €). The algorithm pro-
duces an approximate optimal safe solution. e,
which is an input parameter, specifies how close
in time the desired solution should be to the op-
timal, safe solution. ¢y, ¢p specify the class of
trajectories to be considered “safe.”

Our algorithm runs in time polynomial in the
geometric complexity n, and in the resolution (%)
Thus we can bound both the goodness of our ap-
proximation, and the running time of the algo-
rithm. Furthermore, we can relate the running
time to the error term, and show that this rela-
tionship is polynomial.

More precisely, we observe that an optimal safe
kinodynamic planning problem K has three com-
ponents: The combinatorial complezity of K is
the number n of vertices in the arrangement of
obstacles £. The algebraic complezity of the ge-
ometry is the number of bits necessary to en-
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code the coordinates of the vertices of £, and
the start and goal states. The algebraic complez-
ity of the kinodynamic bounds is the number of
bits necessary to encode the kinodynamic bounds

(@mazs Ymazs €1, -cl:) In the language of combinato-

rial optimization [PS], we show that our algorithm
is an e-approximation scheme that is fully polyno-
mial in the combinatorial and algebraic complex-
ity of the geometry, and pseudo-polynomial in the
kinodynamic bounds.

Note, however, that we cannot claim that the
approximate optimal safe solution is necessarily
near (in position space) to the (true) optimal
safe solution. In this respect it is useful to com-
pare Papadimitriou’s fully polynomial approxima-
tion scheme for 3D Euclidean shortest path [Pap).
Specifically, neither method finds a solution that is
necessarily close (in position space) to the optimal
path, but merely one that has a length (or, in our
case time) that is not too much longer than the
optimal length (resp. time). In fact, the results
of [CR] imply that finding a path that is position-
space close to the shortest path, or even one that
is homotopic to the optimal is A/P-hard.

2.2 Review of Previous Work

For a review of issues in robotics and algorith-
mic motion planning, see [Bra, Y]. There exists
a large body of work on optimal control in the
control theory and robotics literature. For ex-
ample, see [Hol, BDG, Sch, SS1, SS2]. Much of
this work attempts an analytic characterization
of time-optimal solutions—for example, to prove
that in certain cases piecewise-extremal (“bang-
bang”) controls, with a finite number of switch-
ings, suffice. This has led to many interesting and
deep subresults. For example, [BDG, Hol] show
how given a particular trajectory I' = (p,p), its
velocity profile can be rescaled so as to respect
dynamic constraints and to be time-optimal. Us-
ing these ideas, a number of authors have pro-
posed heuristic or approximate algorithms for
what is hoped to be near time-optimal trajec-
tory planning. In particular, Sahar and Holler-
bach [SH] and Shiller and Dubowsky [SD] both
implemented algorithms which employ a fixed-
resolution configuration-space or phase-space grid
to compute, approximately, near minimal-time
trajectories for robots with several degrees of free-
dom (and full dynamics). They did not bound the
goodness of their approximation, nor the running
time of their algorithm. However, their grid meth-
ods take time which grows exponentially with the
number of grid points, or the resolution. We pro-

vide the first polynomial-time algorithm.

The polyhedral euclidean shortest path prob-
lem is a version of optimal kinodynamic plan-
ning with the acceleration bound @4, set equal
to infinity. This observation may be used to ex-
tend the results of [CR] to show that in 3D, opti-
mal kinodynamic planning is A"P-hard. In other

work, O’Diinlaing [O] provides an exact algorithm
for one-dimensional kinodynamic planning. These
methods may extend to the 2- and 3D cases as
well. Kinodynamic planning in 2D is related to
the problem of planning with non-holonomic con-
straints, as studied by Fortune and Wilfong [FW,
W). In this problem, a robot with wheels and a
bounded minimum turning radius must be moved.
To make the analogy clear, in our case, the min-

imum turning radius is ;2—||p||>. These algo-
rithms might lead in time to an exact solution
to kinodynamic problems in 2D and 3D.

3 Description of the Approach

3.1 The Basic Idea

The phase space T'C is the state space for the par-
ticle robot. One can imagine a regular discretiza-
tion of phase space T'C. This discretization can be
thought of as a “grid”; a point in the interstices
is a “grid point”. One could command a move
from one grid point to another using piecewise-

maximal accelerations. Such a motjon is called a
“bang” in the controls literature. Of course, not

all grid-point neighbors will be reachable for an
arbitrary discretization. However, it seems intu-
itively plausible that for a sufficiently “fine” grid,
a grid-point bang path might approximate the op-
timal time path. We wj call a trajectory that
consists of bang-accelerations between grid points
a “grid-bang trajectory”. The key issues are to
choose the grid spacing correctly and to prove that
the approximation bound

(3)

tq S (1+€)b

holds. (b is the true optimal safe solution time,
and ¢, is the grid-bang approximate optimal safe
solution time). Furthermore, the grid must be
polynomial in size. The proofs of these properties
require certain non-trivial constructions.

Our idea is to use a non-linear grid spacing.!
The spacing is a function of the velocity. For
a grid point (x,X), let us call the distance from
(x,%) to each of its grid neighbors the local grid

! Although our discretization does form a lattice in TC,
the reachable neighbors are not the geometric neighbors.
We continue to use the term “grid” for intuition.
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spacing at (x,%). This distance has both a po-
sition and a velocity component. The local grid
spacing in the velocity dimensions of phase space
will be constant. The local grid spacing in a posi-

tion dimension i will be an affine function of the
local velocity #;. s will ensure that from a

state (x, X), all neighbors will be reachable under a.
single acceleration bang. Our approach is further
distinguished from uniform grid algorithms in that
at each time step, one is compelled to move to a
neighbor. The algorithm can find a grid-bang tra-
Jectory that lies within some tube (in phase space)
of the optimal trajectory. By staying within this
tube, we can hope to achieve a constant multi-
plicative error bound in terms of time.

Wilog, we assume that the start s and goal g
lie on the grid. Owur algorithm first chooses a
time-step 7 that we derive as a function of a,,qz,
€, cg, and ¢;. Next, the algorithm performs a
breadth-first search, that takes time O(GlogG)
in the number G of grid points (however, collision
avoidance and §,-safety introduce an additional
quadratic factor in the geometric complexity n).

More specifically, a queue is initialized to con-
tain the start point s. At each step of the al-
gorithm, a state (phase space point) (x,%) is
popped off the queue. We check to see whether
it is the goal. If it is, then we halt; the ap-
proximate grid-bang path has been found. We
consider bangs (maximal accelerations) of dura-
tion 7 along the major axes from (x,X), in both
+ and — directions. For example, in 2D, we
would consider bangs a of the form a;i + ayj for
a; € {0,0maz, —~@Gmaz }- After time 7, the final
phase space coordinates for each bang are taken
as the new set of neighbors. (It is easy to verify
that these grid points have a position offset that is
affine in X, and a constant velocity offset). Those
neighbors that have not been explored are pushed
on the back of the queue. They must retain a
pointer to their father grid point. So a queue en-
try must consist of (a) the grid-point (x,%), (b)
the grid-point’s parent, and (c) the commanded
acceleration a to get there from the parent in time
7. A balanced tree can be employed to keep track
of which grid points have already been explored.

To see that this algorithm is correct, we view
the discrete search space as a directed graph. Ver-
tices of the graph are grid points. Directed edges
correspond to (a, 7)-bangs. Two vertices u and w
are connected by an edge iff w is reachable from
u by an (a, 7)-bang. The vertices connected to u
by edges from u are called its neighbors. Since
we have a normal form for the bangs a, the out-

degree of each vertex is fixed at 39 for dimension

d. The algorithm starts at s and begins construct-
ing edges of the graph. The search terminates
when either a path to the goal g is found, or the
maximal connected component from s has been
explored. Thus the algorithm reduces to directed
graph search. We will show that the number G
of vertices (grid-points) is polynomial. Since we
are seeking a shortest path in a graph where all
edges represent the same time step, we can use the
breadth-first search algorithm above, which takes
time O(GlogG).

There are several complications. First, when a
neighbor is generated, the resulting bang trajec-
tory is considered:

ry:[0,7] —» TC
t — (p,b)=(x+%xt+ iat?, x +at).
(4)

Our planner must ensure that (a) p does not
intersect any obstacles, (b) p does not violate the
velocity bounds (2), and (c) for all times ¢, p(t)
is no closer than c}|p(t)| + ¢, to any obstacle. (a)
and (c) may be tested together by “growing” the
obstacles affinely in T'C as the velocity increases.
Any bang-neighbor violating (b) or (c) is consid-
ered unreachable from (x, %), and so is left uncon-
nected in the directed graph.

If the obstacles are “grown” affinely with veloc-
ity, their boundaries form O(n) algebraic surfaces
in phase space. Collision detection for a single
(a,7)-bang can be accomplished by intersecting
the quadratic trajectory (parameterized by time)
with these surfaces, and performing O(n) sign-
tests on each intersection point. Thus collision
detection can be done in time O(n?) per bang,
and the overall complexity of the algorithm is
O(n%’G + Glog G).

3.2 Details and Lemmas

We now describe the key lemmas in our argument.
First, we develop some lemmas that concern the
approximation of optimal trajectories in the ab-
sence of obstacles. Then we generalize these re-
sults to the é,-safe case, that is, for the case of
optimal safe trajectories that respect a é,-safety

tube.
We denote the position and velocity compo-

nents of a subscripted trajectory I, by p, and
Pr, Tesp. We say that a path p is traversed by a
trajectory I' under acceleration bound @44 if the
image of the position component of T is equal to
the image of p, and T respects (1). First we must
prove a not very difficult lemma showing that al-
lowing a multiplicative time error of (1 + ¢) per-
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mits a trajectory to be traversed with a tighter
acceleration bound. Intuitively, this permits an
approximate, grid-bang trajectory with accelera-
tion bound a to “keep up with” a trajectory that
respects a smaller acceleration bound 1—1-1—‘_'3;, re-

gardless of curvature.

Lemma 3.1 Ifp is traversed in time T, by a tra-
jectory I, under acceleration bound a, then there
exists some '], that also traverses p with acceler-
ation bounds 11_':577 in time T,(1 + ¢).

Proof: Given I', = (p,, Pr), We construct I',.
Let ¢ = TlL-l-eY and let T',’ be given by

T,(t) = (pr(Ct),(f)r(Ct))- (5)

Then the proof follows by checking position
boundary conditions, and differentiating to obtain
the acceleration bound. 0

Now, a time spacing 7 and an acceleration
bound e define a non-linear grid on phase space, as
in sec. 3.1. We call this an (a, 7)-grid. Recall that
a grid-bang (or (a,7)-grid-bang) trajectory starts
on the grid, and is defined by a finite number of
“bangs” (maximal or zero accelerations under the
Loo-norm) each of duration 7. We may think of
it as successive bangs “between” grid points. Our
goal is to choose a sufficiently small 7 such that (3)
holds, but still maintain a polynomial-size number
of grid points. To this end, we must be able to
show that 7 can be chosen such that for any safe
trajectory, there exists a “nearby” grid-bang tra-
jectory that is “almost as fast.” Since the simple
structure of our grid assures neighbor reachability
tautologously, it is easy to see that our algorithm
will ﬁn§ such a grid-bang path if it exists, and is
the fastest.

Consider two trajectories I'y, Ty : [0,0] — TC.
Given two scalars 7, and 7,, we say that we
say that T, approzimately tracks T, to toler-
ance (1z,My) n the Ly -norm if for all times ¢,

[Pg() = Pr(t)loo < 7 and [Bg(2) = Pr(t)oo < 70

Lemma 3.2 (The Tracking Lemma) Suppose
a trajectory I, respects acceleration bounds m

and takes time T,. Then in the absence of obsta-

cles
(a) for any positive 1z, 1,, there ezists a time

spacing T and an (a,T)-grid-bang trajectory T,
with bounded acceleration a that approzimately
tracks T, to tolerance (1z,1y) in time T,.

(b) Moreover, T is polynomial in €, 1, and 7,.
Specifically, when 0 < € < 1, 7 can be chosen as:

. Nx€ 7M€
< yhiad . 6
T —mm( 17a’ 12a) (6)

Proof: We first show that given € > 0 we
can find an integer N such that for any trajec-
tory I'; respecting acceleration bounds I:c and

its running time 7T, the following holds: for any
time-spacing 7 > 0 there exists an (a, 7)-grid-bang
trajectory I'y such that for all integers k such that
0<kNT<T,

[pg(kNT) — Pr(kNT)loo

|Pg(ENT) — pr(ENT)|,

ar?
2

IN

(7)

IA

ar
5 -

Note that if kN7 > T, the “for all” condition is
vacuously true.

Since we are using the Lo,-norm, it is sufficient
to show (7) for one-dimensional C. (For d dimen-
sions we just take the largest N;,0 < i < d.) To
make the proof more readable, we introduce a less
cumbersome notation: foramap porI' to C, TC,
or R, we denote its value at kN7 by p(*¥) or T'(F),
etc.; we denote by Ap(¥) the quantity p(k+1) —p(k),
Note that the dependence of p(¥), T'¥) etc. on 7 is
not apparent in this notation but will be obvious
in the context of the proof.

The proof of (7) is by induction on k. We find a
sufficiently large N that is independent of k and 7
during a construction in the induction step. The
k = 0 base case is trivial because I', begins on a
gridpoint by hypothesis.

Consider the induction step for an arbitraryt >
0. If (k+ 1)N7 > T,, then the induction step
holds trivially. ¥ (k+ 1)N7 < T, then kNT <
T,, and the induction hypothesis states that there

exists some (a, 7)-trajectory I‘,(,k) such that for j =
) < o

8
166" — | ®

I
o

We show that in this case there is an (a,7)-bang
extension 7} to %) so that under T(k+1) = I'k) x
4(%), (8) holds with j = k + 1 provided that N is
sufficiently large and (k + 1)N7 < T,. (Here “+”
denotes trajectory composition, which is similar
to path composition.)
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1 5 _
Assume that N > 1+€ and let @ = o and

(k) ) .
ty = IA%[. Then, we can choose an integer by

such that |bx| < N, and |1')¢(,k) + abxT —j,g"rl)l <

4. We set j)(kH) = p(k) + abgT. We can then con-

struct the set Qy of possible Ap,(, ) for this choice

of p,(,kH) that is, we find all possible Ap( )
der (a,7)-bang extensions v of T'*) such that

(kH) = p(k) + aby7. By considering p,(t) and re-
ca]hng that py(t) is its integral for ¢ between kNt
and (k + 1)N7 under the above constraints, we
conclude first, that max(Qx) = min(Qx) + frar?
for some integer Sk, and second, that v € Qy
if and only if 4 = min(Qk) + nar? for some in-
teger n € [0,08:]. Hence, we say that the suit-
able (a, 7)-bang extensions y(¥) of T'¥) achieve the
full range of [min(Qy ), max(Qx)] with grid spacing
ar?. Now, in a corresponding manner, we define
R to be the (infinite) set of all possible Apgc), for

(k) s(k+1)

a given p; ' and pr
Therefore, we must show that for sufficiently

large N, with p, (k+l) given by the above,

min(Qx) < inf(Ry) - % )
max( Q) sup(Ri) + %~

We describe how to choose N sufficiently large
to ensure the max-sup inequality holds; the argu-
ment for the min-inf case is similar and yields the

same N. The sup(Ri) for a given Ap( ) arises
when T', accelerates fully in the positive direc-
tion for as long as possible with the restriction

of achieving A]')ﬁk). It is easy to see that in the
worst case for a given Apﬁk)

f&"’—;—, < < #,  and
1-,& +1) L < 13<(1 +1) < p( +1)
(10)

If Apﬁ") > 0, then I', accelerates full-positively
for the interval (kN7,kN7 + &tlNT) and full
negatively for the interval (kN + ﬂ%&,(k +
1)N7); otherwise, T, accelerates full-positively
for the interval (kN7,kNt + Nt=t) and full-
negatively for the interval (kN7 + M=t (k +

1)N7). Thus, for a given non-negative Ap(k)

;bﬁk)NT + % + 6(N‘r4—tk22
+ ate(NT — 1)

sup(Rx)

(11)
When Ap( ) is negative, egs. (11-14) and (16)
are very similar; here, we assume the non-negative

case throughout. Let b = |bx|. Then, similarly to
the above, we obtain

max(Qx) > p(k)NT + ab"T + afz(}\;~bk)2
+ ar2bk(N ~ br) — -
(12)

where the “—%2—” is due to the possibility of N —bg
being odd. Combining common terms in N and
b, we get

L (k 2,2 by N2
max(Qr) > P )NT+—“N4T + LeFT
abi‘rz_a_‘,-'{
1 2

(13)
Since by = LR{{;—EVJ or by = l—?(l_tf-?ff-l’ in (13)

we must choose the by that minimizes max(Qg).
Now we consider the various possible values of
by corresponding to different possible velocities at
times kN1 and (k + 1)Nt. Using the RHS of 13,
let us define the function &y, : ® — R so that

®p - k(i) is alower bound on max(Qx) for bz > 0:

Onra(a) = pINT 4 ehGrt g ol

2,2

ariz a‘r2

2

(14)
Since the quadratic terms of ®p,k(z) have
negative sign and ®py,x is continuous, if

(I)N,r,k( l_:ﬁ%;}'] ) S ‘I)N,r,k( [—Rl—tﬁf] ), then
Nk — U < enerlspiee))

if ®nu( I-;ﬁ%'_f?-‘) > By f;(—lﬁ]), then

@N,r,k(:(Ttiw +1) < ®n, - k( [?(Ttﬁﬁ]) Thus, the
following is a sufficient condition for the max case

of (9):

ik at?
A — ——2>0.
(I’N,r,k (T(l n 6)2 i 1) sup(’Rk) 5 =

(15)



We now apply (15) to determine how large N
must be. Let @ = /7 and ( = gi;. Then,

i = ar and ;-(l—thv:tl = a(?+1. Using (11) and
(13) and doing some manipulation, we obtain:

ir ar?
‘I’N.r,k(m 1) - sup(Rg) - - 2

—aNr2 | (1-¢%)aN?r2 | gN12
2 + 4 + 2

(16)

aor?  5ar?

4

+ €0=Caa’ o

After simplification, we get for both Ap(k)
and Ap( ) <o0:

2
aTt

tr
A eE 1)
“T’J [(1 - (*)N?2 4N (17)
+ (1 - Hea? - 2¢%a - 5].

Since 0 < a < N, a sufficient condition for the
right-hand side of (17) to be non-negative is
(18)

N?(1-¢?*)-6N-5>0.
Choosin, ? N to be positive, we see that this is guar-

anteed i
6+\/36+20i1— i)
. 1
N2 =50 a (19)

For all ¢ > 0, (19) is implied by the condi-
tion N > 711+ m) Since for 0 < € < 1,
2> 1+—,+—2, a choice of N > 2 thus implies (19)
and therefore (18) and (9). Therefore, because T
is arbitrary, we have shown that N > 11— is suffi-
ciently large enough for the induction step to go
through—that is, if N > 2L, then (8) holds with
J = k+1 for arbitrary 7 such that (k+1)N7 < T,.
Now that we have shown an upper bound

for how large N must be in (7) indepen-
dent of 7, we can choose 7T such that

|pg(t) = pr(t)] < 7z, and |pg(t) - p,(t)| < o
Since for all k, |py(kN7)—p.(kNT)| < Jar?
and [pg(kNT) — p.(kN7)| < lar, and for aJl t,
|5r(2) — Ba(t)| < 2@, we can simply choose 7 such
that 2(ar? + aN12) + aN7% < 7,. Thus, for the
position case we require that

27,
LD . — 2
TGN (20)

Since |pg(t) — pr(t)] < a(N + 1)r for 0 < t < T,
or else |p{) — p¥| < Jar gets violated, for the
velocity case we require that
T, 1

T< 21

T (21

Substituting our bound for N into (20) and (21)

taking the minimum, we obtain the bound in part
(b) of the lemma (eq. (6)). O

Lemma 3.2 does not yield a polynomially-small
7 that guarantees that a trajectory I, respect-
ing acceleration bound a is tracked to a toler-
ance (7)z,7y) by some (a, 7)-grid-bang trajectory.
However, if 7 satisfies (6), there exists an (a,7)-
grid-bang trajectory that “follows” such a I, in
a weaker sense. Specifically, as in lemma 3.1,
let ( = Tlﬁj and let T,' be given by (5). If

I, is a-bounded, then I,’ is (2a-bounded, and
thus by lemma 3.2, there is an (a,7)-grid-bang
trajectory that approximately tracks T',’ to tol-
erance (7)g,7y). It then follows from (5) and the
definition of “approximately tracks” that for all
t € [0,(1 4 €)T,] we have |pg(t) — Pr({t)|oo < M-
We use this observation to motivate an exten-
sion of lemma 3.2 to obstacle-avoiding trajecto-

ries. Recall that 6, is an affine function of speed
completely spec1ﬁed by two constants ¢p and ¢y
which are input to the algorithm; henceforth we
will abbreviate 6,(co,c1) by d,. Suppose that T,
is 6,-safe, and recall the §,-tube for ', (see sec.
2). It is then clear that I'\ given by (5) must also
be §,-safe. Naively a.pplymg the observation, we
might expect that if a trajectory I'y tracks I', im-
perfectly but closely enough, then the 6,,-tube in-
duced by T';, would lie entirely in §,-tube induced
by T',. Since this is not generally true, it is natu-
ral to try a slightly weaker conjecture: for any 6,’
such that for all speeds ¥ and some constant e,,

60" (y) < 6u(y) + €v, (22)

if Ty tracks I', closely enough, the 6/ -tube induced
by I'y will lie within the §, be induced by I',. This
conjecture is formalized by the following lemma.

Lemma 3.3 (The Safe Tracking Lemma)

Suppose that 6, is specified by co and ¢; and
0<e<1,andletd, = (1—e€)é,. Then for a
given acceleration bound a there exists a tolerance
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(nzymw) such that for any trajectories T, and T
as above (5), the following hold:

(a) If Tq tracks T! to tolerance (ng,ny), then
the 6, -tube induced by Ty lies within the &,-tube
induced by T',..

(b) Furthermore, for any positive 3, the follow-
ing choices suffice:

M S Clhc—:i'}'ﬂ

Ne < B0 (23)
Proof:  We find positive real numbers 7, and
7y such that if Ty tracks I', to tolerance (7z, 1),
then the §)-tube induced by I'y lies entirely inside
the é,-tube induced by I',. Henceforth, let ¢f =
(1—€)ep and ¢ = (1 — €)ey.

Suppose x € C lies inside the §-tube in-
duced by I';. Then for some ¢, € [0,(1 + €)Ty],
[x — pqa(tz)| < g + ¢i|Pg(tz)|. I T'q tracks I'; to
tolerance (7z, 7y), then py(ts) € By, (p)(tz)) and
Pq(tz) € By, (Pi(tz)). (By(p) denotes the closed
n-ball around p in an arbitrary metric.) There-
fore, lx"PL(tz)l < |x_pq(t1)|+77-z‘ and |13q(tz)' <
If’:(tz)l +ny. Since plr(tz) = pr((tz) and pp(t;) =
CPr(Cte), [x=pr(Cta)l < cotnet+ei (1B (Ctz)[+10)-
Therefore, the condition

C6 + 7+ c;('f’r(ctr)loo + nv) Leo+ Cllf)r(ctr()zlzs

implies that |x — p.((tz)| < co + c1|p+(¢ts)| for
some t, € [0,(1+ €)T,]. Simplifying, we find that
a sufficient condition for (24) is

e + (1 — €)erny, < eco. (25)

Thus, (25) implies that if Ty tracks I' to tol-
erance (7z,7y), then the 6, -tube induced by I,
lies entirely inside the 4,-tube induced by T,.
Both parts of the lemma are obtained by letting
Nz = By and observing (25). O

Recall that by lemma 3.2, 7 is polynomially de-
pendent on 7, and 7,. Applying lemmas 3.2 and
3.3 and choosing  to maximize the upper bound
on 7 yields the following theorem:

Theorem 3.4 Given acceleration bounds a, o0b-
stacles £, and positive scalars € < 1, ¢, and ¢y,
for any 6,(co, c1)-safe trajectory taking time T,
there exists a time spacing T and an (a,T)-grid-
bang, 6, -safe trajectory T'y taking time at most
(1+ €)T. In particular, the following choice of
T suffices:

2¢0€?

T< .
144a2c? + 68aco

h 12ac; +

(26)

Proof: Suppose T, is a 6,(co, c1)-safe trajec-
tory taking time T, obeying acceleration bound a.
Applying lemma 3.1, the trajectory I', as given
in (5) respects e and traverses I', in time

(1+ €)T,. Then by lemma 3.3 the choice of a tol-
erance (7, 7y) given in (23) ensures that if a tra-
jectory T, approximately tracks I'; to tolerance
(2, Mv), then the 6. -tube induced by I'y lies en-
tirely inside the §,-tube induced by I',. Since the
§,-tube induced by I', intersects no obstacles in
£, Ty is therefore §,-safe. Given the tolerance
(NzsMw), by lemma 3.2 there is a time-spacing 7
such that some(a, 7)-grid-bang trajectory approx-
imately tracks I'. to tolerance (7)z, 7).

To get the desired bounds, we must choose g3
so that using (26) yields a maximal 7 as given by
(6). Let us therefore define for 8 > 0

B =\ mmaia
(B = mEtsaT
7(8) = min(rz(8),7(8))

By inspection, 7,(0) < 7,(0), 75 is monotoni-
cally increasing, and 7, is monotonically decreas-
ing. Thus, 7(3) is maximized when 7,(8) = 7o(8).
Requiring 3 to be positive and doing a little com-
putation, we find that 7(8) is maximized when

(27)

_ /14402c3(1 - )2 + 1Tacoe? — 14dacy(1 - €)
B 24a '
(28)
Applying either 7, or 7, to this 3 yields the desired
rin (26). O

We now bound the number of (a, 7)-gridpoints
for a point robot with maximum (L) speed vmaz
in a d-dimensional free-space of diameter [. Let
Goo(@, Ty Umar, |, d) denote this bound. Then

Goo(@, T, Vmazy 1, d) = (Goo(@, T, Vmaz 1, 1))”’(. :
29

It is clear that Goo(a, T, Umaz,!,1) is equal to
the maximum number of possible velocities at any
given time k7 multiplied by the maximum num-
ber of possible positions at that time. Since at
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each timestep the change in velocity is ar, —ar7,
or 0, the number of possible velocities is at most

&gﬂl + 1. To see that the number of possible
positions at a given velocity is at most # + 1,
let v; denote the velocity and zx the position at
timestep k for all k. Then zx4; = T + a(k)"%’,
where o(k) € {-1,0,1}. Wlog, let v = 0 and
zo = 0. Since vx = ckar for some integer ci, by
using induction we can show that

2 .
1&;1& if ¢x odd

Tk
a2 _ (30)
Ty = =4 if ¢k even,
where Yy is another integer. It follows directly

from (29) and (30) that

utrtmntid)= (2222 41) (L 4 1))
(31)

Hence, in a bounded workspace with velocity
limits, a polynomial-sized grid suffices to obtain
an approximate optimal safe solution. It is easy to
see that this polynomial-sized grid can be searched
for the optimal (a, 7)-grid-bang path, while avoid-
ing obstacles as prescribed by a safety function 6/,
{n polynomial time. We formalize this claim be-
ow:

Corollary 3.5 Given acceleration bounds a, ve-
locity bounds vy, environment diameter I, and
positive scalars €, co, and ¢, the (a,7)-grid with
T chosen to satisfy (26) has polynomial size. In
addition given obstacles &, start s, and goal g,
a minimal-time (a, 7)-grid-bang, 6.,-safe trajectory
Iy from s to g can be computed in polynomial
time.

Note that the computed trajectory I'y satisfies
the time approximation Ty < (1+¢€)T, in addition
to respecting the kinodynamic constraints and be-
ing 8/ -safe.

4 Conclusions

In this paper we described the first polynomial-
time, provably good approximation algorithm for
kinodynamic planning. We feel that kinodynamic
planning represents a new direction in algorithmic
motion planning, and expect to see much progress

in this area. L
There are many directions for future research:

1. The complexity of our algorithm can proba-
bly be improved.

2. Other search algorithms, such as A*, may be
employed in place of a breadth-first search.

3. Precise lower bounds for kinodynamic plan-
ning should be established (especially in the
2D case).

4. Exact algorithms should be explored.

5. We conjecture that if contact is allowed
(rather than 6,-safety) then the complexity
of the problem increases considerably. More
specifically, one can imagine three related
kinodynamic planning problems:

(a) The first is explored in this paper, where
the robot must avoid obstacles by a
speed-dependent safety margin.

A second problem might be likened to
figure skating: forbidden regions are
marked out in the plane (the “ice”),
and a path with velocity-dependent non-
holonomic constraints must be synthe-
sized. The “obstacles” may be grazed
but not crossed. However, the forbid-
den regions exert no reaction forces on
the robot, even when in contact. This
second problem corresponds to theoret-
ical “true” optimality.

One can also imagine a third problem in
which the reaction forces (impact, con-
straint forces, and friction) of the obsta-
cle surfaces are taken into account.

(c)

Finally, one may consider the optimization
version of each of these problems. Note that
while the theoretical formulation of the “fig-
ure skating” problem is quite clean, it may be
rather far from practical interest.

6. It would be interesting to extend our ap-
roach to 2-norm velocity and acceleration
gounds, and to manipulator systems with full
rotational dynamics. For example, one might
consider the rigid body dynamics of a pla-
nar polygon or a twolink planar manipulator.
Finding near-optimal kinodynamic solutions
in these cases would be of great interest.

In addition, there is a great deal of interest-
ing heuristic and experimental work to be done,
in reducing these algorithms to practice. Compu-
tational kinodynamics seems a particularly fruit-
ful area in which to pursue fast, provably good
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approximation algorithms, since while the prob-
lems are of considerable intrinsic interest, exact
solutions may well be intractable. Finally, since
the problem has an optimization flavor, the al-
%orithms and proof techniques draw on several
ranches of computer science and robotics.

5 Appendix: Some Details on
the Algebraic Complexity

In the language of combinatorial optimization
[PS], we wish to show that our algorithm is an
e-approximation scheme that is fully polynomial
in the combinatorial and algebraic complexity of
the geometry, and pseudo-polynomial in the kin-
odynamic bounds. Recall that an optimal safe
kinodynamic planning problem X has three com-
ponents: The combinatorial complezity of K is
the number n of vertices in the arrangement of
obstacles £. The algebraic complezity of the ge-
ometry is the number of bits necessary to en-
code the coordinates of the vertices of £, and
the start and goal states. The algebraic complez-
ity of the kinodynamic bounds is the number of
bits necessary to encode the kinodynamic bounds
(amaa:’ Umazy 1 -c%)

All numbers in the input are taken to be ratio-
nal. We have shown that the number of steps
required in the algorithm is polynomial in the
combinatorial complexity and (). Since the al-
gorithm requires a certain amount of numerical
computation, we now show that the number of
bits required for any number in any computation
in the algorithm is also bounded polynomially and
that thus our algorithm is fully polynomial in the
algebraic complexity of the geometry as well.

From theorem 3.4 we an have upper bound on

what 7 _can be in the discretization of the state-
space. Examining (26), we see that it is easy to

obtain an acceptable 7 whose length is polynomial
in the length of the input parameters and that is
within a polynomial factor (in @, ¢g, and ¢;) of the
optimal 7. Let D = 144a%¢? + 68acy. Then

_ 2c€? .
T 12acl+14§2§cf+68aco lf D > 1’ (32)
2cg€? .
T 12acf+1 if D <1
It is clear from the development following the

proof of theorem 3.4 that if the initial state, dy-
namics bounds, and timestep 7 for (a,7)-grid-
bang trajectory I'y are given in rational numbers
and rational vectors, then at any time n7 (n a

non-negative integer) the state I'y(nr) is given by
a rational vector. Furthermore, the number of
bits needed to compute these states and single-
step reachability between states in the absence of
obstacles is polynomial in the number of bits in
the rationals in the problem instance. The only
other computations that we need to consider here
are those needed to determine whether a particu-
lar (a, 7)-bang at a given state (p, p) results in vi-
olating 4,-safety during the current timetep. Wiog
we consider the R3 case, first reviewing the repre-
sentation of convex polyhedral objects.

Obstacles are represented as intersections of
closed half-spaces. The boundary plane of each
half-space H is the kernel of an afline function fy,
and where a point p lies relative to H (interior,
exterior, or on the boundary) can be determined
from the sign of fy(p). Thus, if a polyhedron A is
the intersection of the half-spaces described by the
set of functions A = { fo,..., fx } where fi(p) > 0
determines that p is outside closed half-space H;,
then p is a point on the boundary of A if and only
if for all f; € A, fi(p) <0, and for some f; € A,
fi(p) = 0. If n; is a unit vector in the outward
normal direction from the boundary plane of H;,
and x; is any point on this boundary then we can
use the function '

fi(p) = {ni, p) — (ny, xi). (33)

Recall the description of the algorithm in sec-

tion 3.1. We now describe how to check whether
a particular (a, 7)-bang from a state (p, p) would

violate §,-safety with respect to a particular ob-
stacle A during the execution of the command.
To see the key observation, let safety margin é be
fixed, and define the set Bs = {y € R® | |yleo <
0}. Then, staying é-safe relative to A is equiva-
lent to avoiding A’ = A @ Bs, where “@” denotes
the Minkowski sum. A’ is also polyhedral, and
| A'(8)] has size linear in |verts(A4)|, |edges(A)}, and
JA|. Using [LoP] it is clear that computing a half-
space intersection description A’ of A’ can be done
in time O(n?logn) in R3 and O(n) in R?, where
n is the number of vertices in A. By allowing §
to vary, we effectively lift the collision-avoidance
problem from three dimensions to four.

In the general case é is a positive affine function
of v = |P|e, and we can describe members H; of

A’ with functions f; : % — R of the form

fip,v) = (ni,p) — (mi,xi + c1vg)  (34)
where § is a unit oo-norm vector in a grid-bang
direction. A state (p,p) is 6,-safe relative to A
if and only if for all f; € A, fi(p,|Plw) > O;
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fi(p,v) = 0if and only if (p,v) lies on the bound-
ary hyperplane. Because the components of n;
and x; are rational and of polynomial length, it
follows that the coefficients of f;(p,v) must also
be rational,

Define A to be the set of composite func-
tions fi(t) = fi(p(t),|P(t)|eo). Since for any
non-negative integer m (p(mr), p(mr)) is a vec-
tor of rationals, under any (a,r)-bang from mr
to (m + 1)r the components of (p(t), p(t)) are
quadratic functions in (¢ —m7) with rational coef-

ficients. Thus, the f; are quadratic in ¢. (Strictly

speaking, for each f; in this set there are three
sets of coefficients because dominating component
of p can change, but this is easily taken into ac-
count.) Therefore, checking for a §,-safety viola-
tion only requires deciding whether there is some
te € [mr,(m + 1)7] such that fi(t.) < 0 for all f;
and fj(t.) = 0 for some f;, where all f; € A are
quadratic functions in ¢ with rational coefficients.
This checking clearly can be done in polynomial
time and without any number exceeding a poly-
nomial number of bits. Hence, our algorithm is
polynomial in the algebraic complexity of the ge-
ometry.

By substituting the value for 7 (32) into the
bound on the grid size (31), we see that our algo-
rithm is polyromial in the kinodynamic bounds
(@mazs Vmaz, cl,-c%), but not in the size of their

bit encodings. Hence, the algorithm is pseudo-
polynomial in the kinodynamic bounds.
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