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Abstract. Pervasive sensors in the home have a variety of applications
including energy minimization, activity monitoring for elders, and tutors
for household tasks such as cooking. Many of the common sensors today
are binary, e.g. IR motion sensors, door close sensors, and floor pressure
pads. Predicting user behavior is one of the key enablers for applications.
While we consider smart home data here, the general problem is one
of predicting discrete human actions. Drawing on Activity Theory, the
Language-as-Action principle, and Speech understanding research, we
argue that smoothed n-grams are very appropriate for this task. We
built such a model and applied it to data gathered from 3 smart home
installations. The data showed a classic Zipf or power-law distribution,
similar to speech and language. We found that the predictive accuracy
of the n-gram model ranges from 51% to 39%, which is significantly
above the baseline for the deployments of 16, 76 and 70 sensors. While
we cannot directly compare this result with other work (lack of shared
data), by examination of high entropy zones in the datasets (e.g. the
kitchen triangle) we argue that accuracies around 50% are best possible
for this task.

1 Introduction

A number of research groups [8],[17],[9] and corporations [2],[4] have begun to
study the role of computing in the digital home. There is not yet a consensus
on the form that technology in digital homes should take or the purpose it
should serve. Several groups, however, are considering the impact that small,
inexpensive sensors might have on the home environment [1],[9]. Sensors can
be used to support tasks such as activity recognition [9], health monitoring
[13], and energy management [8]. In each of these cases, sensor data is used to
determine the state of the home, making it possible to construct a more adaptive
environment that responds to the needs of its inhabitants. There are several kinds
of sensor analysis tasks including sensor fusion, interpretation, and prediction.
We are most interested in the prediction task because it involves modeling of
human behavior. Prediction from smart home data has been explored by several
groups, especially for lighting and heating control [8]. Additionally, predictive



behavior modeling can be used to build tutors for cooking or other everyday
tasks. Behavior models can typically be used to recognize anomalous behavior
as well such as deviations from routine, or skipped steps in Activities of Daily
Living (ADL) for elders with onset dementia [21].

In this paper we present a very efficient behavior model for predicting future
sensor outputs (and the user’s location) from previous data. The method is scal-
able, works with a variety of sensor types, and is independent of the physical
layout of the sensors. It can be trained in an unsupervised manner without requir-
ing a configuration process or a room model. Setup consists solely of installing
the sensors, putting them in training mode for a few weeks, and then starting
prediction. The system continues to adapt its model from that time on. For us,
it is also important to study models that are plausible from the perspective of
our current understanding of human behavior.

We begin the paper by motivating the model we chose, introducing the
“Language-As-Action” principle. The model itself is based on smoothed n-grams
commonly used in language modeling. Then we explain the method in detail.
We next describe the smart home datasets we used, which came from MIT and
Georgia Tech. Then we present the results from running the model on the smart
home datasets. This section includes analysis of the n-gram statistics, showing
the classic power law or Zipf distribution commonly seen in speech and language
data. We also discuss the limits to this kind of predictive model given the pres-
ence of high-entropy regions, like the “kitchen triangle”. Finally, we discuss the
implications of our results and future work.

2 Background

There has been a remarkable parallel evolution of a principle of “language as
action.” It was articulated first by the psychologist and educational theorist Lev
Vygotsky [18] who along with Piaget remain as the two dominant figures in
human learning research. Vygotsky also articulated various “genetic principles”
governing human behavior. The principles imply that human behavior evolves
at both a social and an individual scale. We found interesting support for Vygot-
sky’s genetic principle in our smart home data, as we will discuss in the results
section. The principle of language as action, is deeply embedded in the work
of certain literary theorists, most notably Kenneth Burke [3] one of the most
influential theorists of the mid-20th century. And most recently it has been fun-
damental to the work of the psychologist James Wertsch [19]. The crux of these
theories are that language and human action are really the same thing. They are
both “mediational means” or tools by which we achieve our ends. They exhibit
structure and satisfy “grammars” (Burke’s terminology). While the structure
exists at many levels, there are strong similarities even at the most simple level
– here we model smart home sensor data with language models that are normally
used for words in a large corpus of text. We further show that the sensor outputs
show the same fundamental statistics as texts (Zipf statistics). This is a far from
obvious outcome – Zipf distributions are very “unnatural” in a statistical sense,



say if one assumes that behavior is a result of a rational deliberation process.
They are however, a universal trait of evolution (where they were first stud-
ied). In particular, they can arise from the evolution of behaviors – even simple
behaviors such as walking around the house. Because of this deep connection,
and because language and speech technology is one of the most heavily studied
areas of human-machine interaction, we draw our behavior model directly from
language modeling. For the latter, the state-of-the-art is a smoothed Markov or
n-gram model (not to be confused with Hidden-Markov Models which are used
for other tasks in speech processing) [5]. N -gram models are used in virtually
every speech understanding system, and increasingly in information retrieval as
well.

For the purposes of this paper, when we we refer to sensors we are explicitly
considering simple “on/off” sensors such as motion detectors, status-reporting
light switches, and appliance usage sensors. We consider these types of sensors
for several reasons. First, we agree with the idea of “tape on and forget” [17]
sensors that can be easily installed by end users with a minimal amount of config-
uration. We believe that systems using such sensors will be adopted more quickly
than systems using complex sensors that require specialized installation. Simple
sensors may also be seen as less invasive than complex sensors like cameras or
microphones [17]. Additionally, simple sensors should be easier to integrate into
the environment, an important consideration in light of the fact that some sub-
jects describe their homes as seeming “dirty” when visible sensors are installed
[1].

As an example of the specific need for local sensor event prediction, we con-
sider the University of Colorado, Boulder, Adaptive House, which used sensors
to automate lighting control. The Adaptive House faced the problem that lights
only turned on after an inhabitant’s motion in a room was detected, causing a
perceptible lag in system responsiveness [8]. This problem was solved through
the creation of a customized neural network designed to predict the state of the
system two seconds into the future. While effective, the Adaptive House was
customized to a specific home environment and prediction task, lacking the gen-
erality and scalability needed to satisfy the design goals of simplicity and ease
in installation.

The MavHome project also focuses on creating intelligent homes through
the use of prediction [10],[14]. However, information about data perplexity and
running time is not available, making it difficult to compare our results directly.

3 Methods

We used the following five design goals in designing our prediction system1:

– Probabilistic prediction. The use of probabilistic methods makes it pos-
sible to associate a degree of confidence with each prediction and to consider

1 These design goals are based on those presented by Tapia et al. for activity recogni-
tion [17].



a range of likely events, enabling the system to deal with the noise and
ambiguity inherent in sensor data.

– Model-based vs instance-based learning. The incremental construction
of models from training data makes it possible to build a predictor without
the need to save all examples as raw data.

– Sensor location and type independence. Systems should operate ef-
fectively “even when the algorithm is never explicitly told the location and
type of a particular sensor” [17], minimizing installation times and lowering
barriers to adoption.

– Real-time performance. Any practical prediction algorithm must be able
to make predictions in real-time.

– Online learning. Any system designed for long-term use must be able to
adapt its model to support changes in inhabitant behavior over time.

In addition to these design goals, we found motivation in the similarity be-
tween streams of sensor data and language described previously. Language mod-
eling algorithms often assume that languages are ergodic, having the property
that the probability of any state can be estimated from a long enough history
independent of earlier conditions [15]. One measure of this local structure is per-
plexity which, roughly speaking, is a measure of the number of words that might
follow a particular word given its history. In the English language, perplexity can
range from 20 for specialized subsets of the language to 247 for general Amer-
ican English [11]. The sensor data used in this project has perplexity ranging
from 4 to 21, suggesting that predictive algorithms which work well in language
modeling should work as well or better in short-term sensor event prediction.
We chose to begin exploring this direction by using n-gram language models,
mapping directly between sensor events in our system and words in language
models. As we will discuss later, the actual distribution of sensor data supports
the standard assumptions made by n-gram models.

The goal of language modeling is to calculate the probability of a word wi

given its history – that is, to compute P (wi|w1, . . . , wi−1). If a language is er-

godic, then this probability can be estimated by P̂ (wi|wi−n+1, . . . , wi−1), for a
sufficiently large n. An n-gram language model can be used to calculate the max-
imum likelihood estimate of P̂ by counting word sequences in a set of training
text:

P̂ (wi|wi−n+1, . . . , wi−1) =
C(wi−n+1, . . . , wi)

C(wi−n+1, . . . , wi−1)
, (1)

where C(·) is the count of a given word sequence in the training text. The Hid-
den Markov Model Toolkit (HTK)’s language modeling tools [22] provide tools
for collecting n-gram statistics. We based our system on these tools, augmenting
them with code to make predictions based on such models. HTK provides sev-
eral optimizations in collecting n-gram statistics, including a smoothing method
incorporating back off and Good-Turing discounting as described in [6].

In any set of training data, it is unlikely that all possible sequences will
be observed. However, it is unreasonable to assume that unobserved sequences



are impossible. This dilemma can be overcome by “discounting” the probabil-
ity of all observed sequences by some small amount and distributing the extra
probability among the unobserved sequences. When using back off, the extra
probability is distributed based on the likelihood of shorter sequences – An
unobserved sequence (wi−n+1, wi−n+2, . . . , wi) will receive higher weight if the
shorter sequence (wi−n+2, . . . , wi) is common. In HTK, back off is implemented

by calculating the probability P̂ (wi|wi−n+1, . . . , wi−1) using the equation

P̂ (wi|wi−n+1, . . . , wi−1) =






α · P̂ (wi|wi−n+2, . . . , wi−1) : count = 0

dC · C(wi−n+1,...,wi)
C(wi−n+1,...,wi−1)

: 1 ≤ count ≤ k
C(wi−n+1,...,wi)

C(wi−n+1,...,wi−1)
: count > k.

, (2)

where α is the fraction of the discounted probability given to the unobserved
sequence, dC is the factor that discounts probability from observed sequences
and count is the number of examples of the given sequence in the training data.
For a full description of the implementation of smoothing in HTK, see [22].

The use of n-gram models fits the design requirements described above:

– Probabilistic classification. The counts used in n-gram models provide a
probabilistic prediction of sensor events.

– Model-based vs instance-based learning. N -grams build a predictive
model in the form of gram counts, and original data can be discarded as
global statistics are accumulated.

– Sensor location and type independence. N -grams do not require any
knowledge of the specific sensors being used or their location in the home.
Since they consider common sequences in the data, they learn the structure
of the data without requiring difficult or tedious system setup (although
“good” sensor placement will still improve system performance).

– Real-time performance. The authors of [17] suggest that temporal models
such as dynamic belief networks (DBNs) may not scale well to environments
with hundreds of sensors. N -grams take advantage of temporal information
through the use of simple and fast counting methods, allowing them to easily
deal with large sets of data. Their empirical performance on sensor data will
be discussed later.

– Online learning. The gram counts collected by n-gram models can be
continually updated, allowing the system to adapt to changing patterns in
user’s routines.

4 Data Set

We are aware of few projects that have considered sensor data collected from non-
laboratory home environments. While it is possible to generate data sets through
simulation [14], it is important to validate algorithms on real data collected in
complex, noisy environments [17]. We developed and tested our system primarily
using data from the Georgia Institute of Technology Aware Home project [12],



and we conducted additional tests using data from the Massachusetts Institute
of Technology House n project [17].

The Georgia Tech data set is a one year database of sensor events collected
as part of the digital family portrait project [13]. In the project, the home of a
single elderly resident was equipped with 16 in-floor pressure sensors that were
triggered whenever someone walked over them. Since the sensors detect pressure
in the floor, they can be completely invisible, making them good candidates for
deployment in actual homes [1]. The layout of the residence and the sensors is
shown in figure 1. Most of the time, the single resident was the only person in
the home.
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Fig. 1. Georgia Tech Floor Plan and Sensor Layout

The data was provided to us as a list of (sensor, timestamp) tuples. Be-
cause some sensors would repeatedly fire as the resident walked across them,
we collapsed repeat firings into a single event. Additionally, we inserted PAUSE

events into the data whenever the time between two sensor events was greater
than some time tpause, which was an input parameter. These pause events were
inserted in order to model the difference between dwell spots (a sensor followed
by a pause event) and paths through the home (a sequence of sensors without a
pause event).

We also tested our system on data from the MIT House n project [17]. The
data set consists of two week segments of sensor data collected from two different
single resident apartments. In the study, the apartments were instrumented with
76 and 70 “state-change” sensors, respectively. The sensors reported the status of
numerous aspects of the homes, including doors being open or closed, appliances
being in use or idle, and lights being on or off. The smaller amount of training



data and the larger number and variety of sensors makes the House n data set
an interesting means of exploring the versatility of our algorithm.

Each data set was transformed into an ordered sequence of sensor labels and
PAUSE events, and our goal was thus to predict the next sensor to be triggered
given the sequence of sensors that were triggered recently.

5 Results

5.1 Data Analysis

The distribution of n-gram sequences in the Georgia Tech data set, shown in
figure 2, is similar to a the Zipf distribution often seen in language. Zipf, or
power law distributions are described by the relation Nr ∼ 1/ra, where r is
the rank index of a particular sequence and Nr is the number of occurrences of
that sequence. On a log-log plot, such distributions appear as a straight line,
which can be seen in the right side of figure 2. Zipf distributions are indicative
of “genetic processes”, such as those described by Vygotsky [18]. In particular,
evolutionary development of “populations” of species in biological genera [20],
of city sizes [16], and, in this case, of behaviors has been shown to manifest a
Zipf distribution.
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Fig. 2. Distribution of n-gram occurrence counts in the Georgia Tech data set on both
linear (left) and logarithmic axes (right). r is the rank ordering of sequences, from most
to least common, and Nr is the relative frequency of each sequence. The linear curve
on the logarithmic axes is characteristic of a power law (Zipf) distribution.

Looking more closely at the data, table 1 shows the five most common 6 -
grams in the Georgia Tech data set (with a sensor timeout, tpause, of 5 minutes).
The sequences seem to follow common pathways through the home. Additionally,
they reflect a local structure that supports the ergodicity assumption behind n-
gram language models. E.g., the local “inner sequence” 27, 3, 11, 5 is visible in
each of the last three sequences and is itself one of the most common 4 -grams.



This mapping between language and human behavior, evidenced through the
Zipf distribution of movement sequences and the “local structure” of those se-
quences, supports the application of language modeling techniques to the mod-
eling of human behavior.

Table 1. Most common 6 -grams in the Georgia Tech data set

Sequence Percent of Total Observations

20, 19, 20, 19, 20, 19 2.26%
19, 20, 19, 20, 19, 20 2.17%
20, 12, 27, 3, 11, 5 1.72%
12, 20, 12, 27, 3, 11 1.56%
11, 5, 4, PAUSE, 4, 5 1.26%

5.2 Model Performance

We first tested our system on the Georgia Tech data set, with and without the
back off and smoothing optimizations as implemented in the HTK language
modeling tools [22]. The optimizations had a significant impact on performance,
as shown in table 2. The results are also significantly above baseline – completely
random guessing would result in an expected accuracy of 6.25%2.

Table 2. Effect of Back Off and Smoothing on the Georgia Tech Data Set. (The “top
2” and “top 3” results consider cases where any one of the top two or three most likely
predictions is correct.)

n-grams with Back Off & Smoothing Simple n-grams

Percent correct 51% 38%
Percent correct (top 2) 67% 50%
Percent correct (top 3) 72% 62%

Table 3 shows the results of using the n-gram model to compute single-step
predictions with back off and smoothing on the three data sets. The “G. Tech

2 Note that it would be possible to make a somewhat smarter guess by picking a
neighboring sensor rather than a random sensor, but this would violate the design
requirement of sensor location independence since it would require knowledge about
the layout of sensors within the home (and thus a more complicated system config-
uration process).



Limited” column includes the results of training the system on 2,000 events from
the Georgia Tech data set, which is equivalent to the amount of data available
in the MIT House n data sets. The similarity between the results in “G. Tech
Limited” and the two MIT data sets suggests that the lower performance on
the MIT data relative to the full Georgia Tech data set is a function of the
amount of training data available rather than of the larger number of sensors
in the MIT installations. The n-gram model may be capable of accommodating
the increased number and variety of sensors in the MIT data sets, but we cannot
confirm this fact without the availability of more training data.

Table 3. N -gram model results

G. Tech G. Tech Limited MIT 1 MIT 2

n-gram size 5 3 3 3
Percent correct 51% 44% 39% 43%

Percent correct (top 2) 68% 63% 47% 48%
Percent correct (top 3) 72% 68% 49% 49%

Perplexity 3.65 5.69 16.8 17.2
Number of sensors 16 16 76 70

5.3 Discussion of Results

When interpreting the predictive results of the n-gram model, it is important to
consider the nature of the paths that residents take through the home. In many
cases, the high entropy in the data may impose a limit on the ability to make
predictions of future movement at the sensor level. If in a given situation there
are a number of sensors that are equally likely to be the next sensor, then we
cannot do better than make a random choice between them. As an example, we
consider the Georgia Tech data set.

Many of the most common paths in the Georgia Tech data set occur within
the “kitchen triangle” (sensors 12, 19, and 20 – see figure 3), which suggest the
process of preparing a meal and moving between the sink, the stove, and the
refrigerator. In fact, the top four n-grams shown in table 1 all include various
movements among the kitchen sensors as a subsequence. This means that, given
that the resident has triggered one of the three kitchen sensors, it is likely that
her next movement will be to one of the other two. Choosing between these
two sensors would suggest a maximum accuracy of 50%, which is approximately
what the n-gram-based model achieves.

This level of accuracy is also useful for many possible applications. In energy
management and lighting control systems, any increase in predictive performance
will have an impact on system efficiency. Typical systems (e.g., [8]) make use of a
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cost function that penalizes the system both for wasting energy (e.g., turning on
lights or heating when no one is around) and for inconveniencing residents (e.g.,
not turning on lights when someone enters a room). Depending on the balance
between these two penalties, a system can choose how cautious to be in reducing
energy costs. For example, if a resident with a lighting control system begins to
move around her home, a system with low predictive performance may turn on
most of the lights in the house until the resident stops moving while a system with
perfect performance could turn on only the lights along the resident’s predicted
path. Systems with performance between these two extremes can turn on lights
along several of the most highly predicted paths (for example, using the top 2
or top 3 sensors as predicted in table 3, with incremental increases in predictive
performance enabling them to move toward more optimal operation.

5.4 Performance

One key advantage of n-gram models is their speed. Because they are imple-
mented primarily through counting, n-grams require very little processing time,
especially when compared to complex methods such as DBNs. In our implemen-
tation, it took 48 seconds to construct a model of the one year Georgia Tech data
set, which consisted of 134,000 data points. (All results are for a 1.6 GHz Pen-
tium M system with 512 MB of RAM running Windows XP.) Prediction times
for the three data sets are shown in table 4. Based on the observed per-sensor
prediction time of 0.01 ms for 10 -gram models, the system should be able to
support a deployment of 1,000 sensors while making predictions at a frequency
of 100 Hz.

6 Future Work and Conclusion

As suggested by the close ties between human activity and language, predic-
tive models used in language modeling can be applied successfully to behavior



Table 4. Average Time Per Prediction

Georgia Tech MIT Apartment 1 MIT Apartment 2

2 -grams 0.0216 ms 0.129 ms 0.122 ms
5 -grams 0.0610 ms 0.385 ms 0.356 ms

10 -grams 0.174 ms 0.857 ms 0.813 ms
15 -grams 0.345 ms 1.37 ms 1.34 ms

Number of Sensors 16 76 70
Prediction Time per Sensor 0.01 ms 0.01 ms 0.01 ms

(10 -grams)

modeling. N -grams provide a fast and accurate method for making single-step
predictions on home sensor data, and we have argued that they achieve close
to the best possible accuracy achievable on the task. However, n-gram models
do not take into account higher level information such as task, activity or goal.
Systems which integrate such high level information with low level analysis have
been shown to be effective [7] in modeling human activity. We plan to explore
building a similar hierarchical system on top of our existing framework.

The level of performance necessary in predictive systems will ultimately de-
pend on the types of applications in which they are deployed. Additionally, mea-
sures of performance will include more than just accuracy and should be based
on the actual impact predictions have on system behavior and their utility to
household residents. Such systems must also take into account issues such cost
of deployment, privacy, and error recovery methods. We plan to move quickly
toward the implementation of applications in actual homes in order to assess the
types of prediction errors that are the most problematic and to determine what
level of performance is expected by users.
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