
6 System architecture

Cursive is an application for interactively controlling the animation of VRML avatars. It uses

the pen interaction technique described in Chapter 3 - Interaction technique. It is used in conjunc-

tion with so-called “browser only multi-user” virtual environments to send animation com-

mands to avatar drones across the internet. Written without the use of any vrml browser or

virtual world software API’s, Cursive communicates directly with the avatar instances. Because

it bypasses the virtual environment system communication protocols, other users logged into

the same virtual world can view the avatar’s animation without modifying their existing soft-

ware configuration. This application benefits avatar designers who want to display animation

behaviors to a public audience without committing themselves to a particular virtual world

system or forcing the audience to adopt specialized software.

6.1 Cursive

Cursive is a distributed application that works with avatars in a VRML (Virtual Reality

Modeling Language) based virtual world. The gesture command portion of the software runs

on the user’s local host. It provides the user interface, accepts the user’s pen gesture input, gen-

erates the avatar gesture animation commands, and sends the commands to the avatar via a

socket connection.
84

The animation portion runs on every host, local and remote, where instances of the

user’s avatar appear. This portion runs inside of a VRML browser and consists of Java code

that is part of the VRML avatar’s script nodes.As it receives the gesture commands from the

network, it animates the avatar.

A screen shot of the Cursive window alongside a VRML browser is shown in Figure 6-1.

The Cursive window appears in the upper left hand corner of the screen. The VRML browser dis-

playing the user’s avatar covers the right hand side of the screen.

6.1.1 Portability

This application provides a testbed for the development of our interaction technique.

We intend to experiment with it in public virtual worlds. To maximize the number of potential

viewers of our gesturing avatar, we designed Cursive to be independent of any specific virtual

world software. The files describing the avatar object (both its geometry and behaviors) consist

of standard VRML 2.0 files and some Java code associated with the VRML script nodes.

Cursive window

VRML browser

Figure 6-1. Cursive window next to a VRML world browser.
85

The architecture is designed so that the avatar’s animation behaviors are not dependent

on the specific virtual world (VW) software being used as long as the world is viewable using

a standard VRML browser. Neither the VW server nor the client are modified to support these

behaviors. When the user logs into a virtual world, the control enhanced avatar is uploaded just

like any other avatar. As the user navigates the world and animates the avatar, the avatar’s

movement can, in principle1, be seen by any users who are viewing the virtual world. The view-

ers are unaware of the source of the avatar’s animation.

6.1.2 Interest

The design of this application is of interest to any VW content developers who want

to implement portable interactive behaviors for avatars and other distributed objects. An appli-

cation such as this will allow designers to view and test designs for their objects without com-

mitting to a particular virtual environment platform. It allows these objects to be dropped into

any VRML based virtual world.

6.2 Virtual world application model

Normally, a user runs proprietary software, called a VW client, to log into a virtual

world, communicate with other users, and navigate their avatar around the world. Cursive runs

alongside this software without interfering with the client’s avatar navigation controls or any

of its other functions. To describe how Cursive is able to control an avatar in this execution

environment, we first review the workings of a generic multi-user virtual world application.

1In practice, not all VRML features are implemented by all VRML browsers. The functional-
ity of the VRML script node Java interface varies widely. The application has been used suc-
cessfully in Cortona and Cosmo running in Microsoft Explorer 5.0.
86

For illustrative purposes, we describe a client-server VW application although Cursive’s archi-

tecture should allow it to work with a peer-to-peer application as well.

A conceptual model of the example VW application is shown in Figure 6-2. The virtual

world clients we have used run as applets within a web browser, and the VRML browsers are

plug-ins to the web browser. Conceptually, we can think of the VW client and VMRL browser

as running side by side and communicating via their own application interface.

6.2.1 Virtual world manager

The virtual world manager serves the world objects (the VRML files and script code

which make up the world), and manages the state of the world. The state includes the logins

and logouts of users and the position and orientation of the each user’s avatar within the world.

Whenever the state of the world changes through the actions of one of the users, the change

gets sent to the VW manager to be propagated to the rest of the VW clients. The manager also

caches the URL’s of any user-uploaded objects, including avatars.

Figure 6-2. Conceptual model of multi-user virtual world application

User host

virtual world
client

vrml
browser

virtual world
Manager

Manager host

Web server

world
files

user
87

6.2.2 Virtual world client

The user logs into the manager using VW client software on their own host. The client

sends and receives updates to the world state. As the user moves their avatar, known as the

pilot avatar, around the world, the client detects these motion events and sends the updated

coordinates of the avatar to the virtual world server. When the other clients receive the

updates, they update their local instances of the avatar, known as drones2, by sending motion

events to the VRML browser. The client communicates with the virtual world manager using

an internet protocol such as TCP or UDP.

6.2.3 VRML browser

A VRML browser manages the local state of the world, and renders the worlds includ-

ing any avatars in it. Although the user logs into the world using the VW client, they interact

with the world through the VRML browser. In fact, all changes to the world are originated in

the VRML browser by the user. The VRML browser has its own user interface separate from

the virtual world client’s browser.

User actions that affect the world initially update the local state. These actions include

navigating the pilot avatar around the world as well as manipulating other pilot objects. For

instance, clicking on a door object may cause the door to open. After the update, the change

events are made available to the VW client. The VRML browser also receives change events,

affecting drone objects, from the VW client. These are events that result from the actions of

remote users at other VRML browsers.

2The terminology pilot and drone are borrowed from Living Worlds, a proposed standard for
distributed interaction in VRML virtual worlds. “Pilot” refers to the avatar instance, or any
object instance, that originates a behavior. “Drones” are instances that reflect the behavior of
the pilot.
88

6.3 Cursive communication

Cursive is designed to work with a VRML BOMU (Browser Only Multi-User3) Virtual

World, meaning that only a standard VRML browser is required for viewing the world. We take

advantage of the fact that the VRML browser can execute code that extends VRML object

behaviors. We use this functionality to set up communication between the user and the avatar.

This allows Cursive to communicate with the avatar through the VRML browser and without

having to use the protocols of the virtual world manager and client. It also allows Cursive to

communicate with the avatar running on the machines of other viewers. In the rest of this

description, we will differentiate among types of users as follows.

User. Refers to a human who is running Cursive, viewing an avatar through the vrml

browser, or running a virtual world client.

Driver. Refers to a Cursive user who is controlling an avatar.

Viewer. A user who is viewing a virtual world, and in particular, who is viewing the gesturing

avatar. Note that the driver is also a viewer.

3BOMU is also part of the Living Worlds specification.
89

Initially, before the Cursive driver even logs into the virtual world, they are running the

VW client, the Cursive application and a web server on their machine as shown in Figure 6-3.

The local web server will be used to serve the user’s avatar files.

Recall that in the standard model, the user controls their avatar using the VRML

browser interface, these changes are applied to the local state, and then are sent to the virtual

world client. Cursive provides its own user interface for controlling the avatar gesture and

communicates directly with the avatar through VRML script nodes, bypassing the VW client

and server. The steps involved in setting up the network communication within the Cursive

application are described in the next few sections.

6.3.1 Updating virtual world state

The Cursive user logs into the virtual world using the VW client and supplies the URL

for their avatar. The client communicates this event to the VW manager, usually through a

Figure 6-3. State of system before user log’s in to virtual world.

Driver host

Cursive

Web server

virtual world
client

vrml
browser

virtual world
client

vrml
browser

Viewer host

Avatar
files

user
90

TCP connection. Once the login is registered, the VW manager responds by sending back the

current world state and URL’s for the world model and for the other avatars in the world. All

other user’s are informed of the new login and they receive the URL for the Cursive avatar.

This updating is shown in Figure 6-4.

The actual VRML files are downloaded by the VRML browsers from web server hosts

using HTTP. Figure 6-5 shows the VRML browsers downloading the Cursive avatar.

Figure 6-4. Virtual world server updates virtual world clients.

Virtual world host

 Server

Driver host

Cursive

virtual world
client

vrml
browser

Viewer host

virtual world
client

vrml
browser

Web server

Avatar
files

url's for
world

url's for new
user's avatar

Driver host

Cursive

virtual world
client

vrml
browser

Viewer host

virtual world
client

vrml
browser

Web server

Avatar
files

pilot
avatar

drone
avatar

Figure 6-5. Virtual world browsers download the new user’s avatar.
91

6.3.2 Gesture command communication

Among the files that make up the Cursive avatar are files containing the Java code for

communicating with Cursive and for animating the avatar. This animator code is executed

within the VRML browser as shown in Figure 6-6. (Actually, it is executed by the web browser

that is hosting the VRML browser. For simplicity, we are eliding the presence of the web

browser.)

To receive the gesture commands, the Java code opens a network socket connection

to Cursive. In general, a web browser’s security manager will not allow external code to open

a network connection. In this case the socket connection is allowed because Cursive is running

Driver host

Cursive
Server

virtual world
client

Gesture command
communication

vrml
browser

Cursive
Animator

vrml
browser

Cursive
Animator

vrml
browser

Cursive
Animator

vrml
browser

Cursive
Animator

virtual world
client

Viewer1

virtual world
client

Viewer2

virtual world
client

Viewer3

Figure 6-6. Gesture commands sent to all copies of user’s avatar.
92

on the same host as the web server that served the code. This is the reason that the driver must

serve their avatar’s files from their local host.

From then on, the user can control their avatar through Cursive. The gesture com-

mands are sent to all avatar copies via these sockets as shown in Figure 6-6. Unlike the stan-

dard model, there are no avatar drones. Recall that normally pilot objects are manipulated

through the VRML browser user interface and that these events then get passed to the client

whereas drones receive events from their own client.In the Cursive model, none of the avatar

instances is privileged in this way since all receive their commands through a socket connec-

tion.

6.4 Cursive functional modules

Cursive is the implementation of the our interaction technique for controlling expres-

sive avatar gesture using pen gesture, as described in Chapter 3 - Interaction technique. The code is

written entirely in Java. A schematic for the modules is shown in Figure 6-7.

6.4.1 Pen UI and pen gesture feature analyzer

The Pen user interface puts up a window for the user to write into. Digital ink from

the pen gesture is then passed on to a handwriting feature analyzer. Some of the features are

used by the character recognizer to determine the identity of the pen gesture. Other style fea-

tures are passed directly to the avatar gesture modulator to be mapped to motion modulation

parameters.

The code for the pen user interface is a modification of the Quill program, a pen ges-

ture training and evaluation application developed by Long at U.C.Berkeley [68]. Quill imple-

ments the feature-based pen gesture recognition algorithm developed by Rubine[93].
93

6.4.2 Gesture generation

At runtime, the gesture library files are read from disk into the avatar gesture library

and become available online. The pen gesture identity, computed by the character recognizer,

selects a particular avatar gesture type from the gesture library as shown in Figure 6-8a. The

data for the selected gesture is passed to the avatar gesture modulator along with a vector of

handwriting style features. The avatar gesture modulator synthesizes a specific gesture motion

that is specified by the style features. Recall that we synthesize gesture by interpolation from

motion samples as shown in Figure 6-8b, and that the style features are mapped to the inter-

polation parameters.

Figure 6-7. Cursive functional modules.

Handwriting
Feature
analyzer

Gesture
server

AnimatorAvatar
 files

Avatar
gesture
modulator

Pen UI

Cursive application on driver's host

Avatar code on viewer's host

Character
recognizer

Avatar
gesture
library

Gesture
library
files

Socket connection
94

6.4.3 Gesture command server

The Gesture server transmits the avatar gesture motion commands to the avatar over

a socket connection. When Cursive runs, the server waits for socket connection requests from

copies of the user’s avatar that have been loaded into a VRML browser. Once a connection is

established, the server sends avatar gesture commands to the avatar as long as the avatar main-

tains the connection.

An avatar gesture command consists of a series of key frames and time stamps indicat-

ing the relative timing of the key frame within the gesture animation. The gesture command

protocol consists of two kinds of packets: timestamp packets and joint value packets. At the

beginning of a key frame, the servers sends a timestamp packet indicating the time of the key

frame relative to the beginning of the gesture. The timestamp packet also indicates the number

of joints that will be described in the key frame. A packet with timestamp 0 indicates that a

new gesture is beginning. Then the key frame values are sent out as a series of joint value pack-

ets, one packet for each joint that is part of the animation.

Time zero for the gesture begins from the time the letter is recognized. At present, the

letter is recognized only after the pen is lifted. However, in a continuous recognizer, the pen

Hispeed

θ

θ

amplitude

 shrug

Low
t

t

 wave

a

(a) (b)

Urgency

u = .3
 come to

0.3

0.0

1.0
θ

t

Figure 6-8. (a) Letter identity selects particular gesture; (b) features modulate motion.
95

would not have to be lifted for the letter to be recognized. Rubine’s pen gesture recognition

algorithm also supports continuous recognition, but we have not taken advantage of this fea-

ture as it was not implemented in Quill.

6.4.4 Gesture animation

The gesture animation code is part of the VRML script nodes belonging to the avatar

model files. The key frames for a gesture are streamed to the avatar as soon as they are avail-

able. The animation code is executed inside of a VRML browser and is responsible for playing

back the gesture with the correct timing.

The key frames are stored in a queue, and each frame is dequeued at the time it should

appear in the animation. When a timestamp packet comes in with value 0, the current time is

noted as the real start time of the avatar gesture. As each successive timestamp packet is

received, the key frame associated with that time stamp is marked with the real time at which

it should be animated, that is, the start time plus the time value of the timestamp. Since com-

mands can be sent faster than the gesture itself can be performed, more than one gesture may

be on the queue at the same time. In this case, the gestures are just performed successively.

In general, the avatar animation update rate that will differ from the frame rate of the

gesture commands. For instance, the key frames for a gesture may be drawn from joint angle

trajectories sampled at 20 Hz while the avatar may be animated at a rate of 12 Hz. Because of

this difference, the angles used to update the avatar animation will usually be interpolations of

angles specified in the command gesture key frames. The joint rotations are represented using

quaternions, so quaternion interpolation, as described in Section 4.3.3, is used to calculate the

interpolated frames. However, other interpolation methods, such as spline interpolation, may

provide better animation.
96

6.5 Summary

Cursive demonstrates an application in which pen gestures are used to control avatar

gestures. The architecture of this application was designed so that expressive avatars can be

controlled in a virtual world without having to modify the virtual world infrastructure. As a

consequence of this design, it should be possible to “drop” expressively animated avatars into

existing avatar worlds.
97

	6 System architecture
	6.1 Cursive
	6.2 Virtual world application model
	6.3 Cursive communication
	6.4 Cursive functional modules
	6.5 Summary

