
CS 162 Spring 2004 Lecture 9 1/13

CS 162 Operating Systems and Systems Programming
Professor: Anthony D. Joseph

Spring 2004

Lecture 9:
Readers-Writers and Language Support for Synchronization

9.0 Main points:

Review definition of monitors and condition variables
Illustrate use of monitors and condition variables by solving readers-writers
problem
Language support can make thread programming easier.
Threads are a fundamental OS abstraction, but be careful about how you use
them.
Summarize concurrency section

9.1 Readers/Writers

9.1.1 Motivation

Shared database (for example, bank balances, or airline seats)

Two classes of users:

• Readers – never modify database

• Writers – read and modify database

Using a single lock on the database would be overly restrictive. Want:

• many readers at same time

• only one writer at same time

CS 162 Spring 2004 Lecture 9 2/13

9.1.2 Constraints

1. Readers can access database when no writers (Condition okToRead)

2. Writers can access database when no readers or writers (Condition

okToWrite)

3. Only one thread manipulates state variables at a time.

9.1.3 Solution

Basic structure of solution

Reader

wait until no writers

access database

check out – wake up waiting writer

Writer

wait until no readers or writers

access database

check out – wake up waiting readers or writer

State variables:

of active readers – AR = 0

of active writers – AW = 0

of waiting readers – WR = 0

of waiting writers – WW = 0

Condition okToRead = NIL

Condition okToWrite = NIL

Lock lock = FREE

CS 162 Spring 2004 Lecture 9 3/13

Code:

Reader() {

// first check self into system

lock.Acquire();

while ((AW + WW) > 0) { // check if safe to read

// if any writers, wait

WR++;

okToRead.Wait(&lock);

WR--;

}

AR++;

lock.Release();

Access DB

// check self out of system

lock.Acquire();

AR--;

if (AR == 0 && WW > 0) //if no other readers still

// active, wake up writer

okToWrite.Signal(&lock);

lock.Release();

}

CS 162 Spring 2004 Lecture 9 4/13

Writer() { // symmetrical

// check in

lock.Acquire();

while ((AW + AR) > 0) { // check if safe to write

// if any readers or

// writers, wait

WW++;

okToWrite->Wait(&lock);

WW--;

}

AW++;

lock.Release();

Access DB

// check out

lock.Acquire();

AW--;

if (WW > 0) // give priority to other writers

okToWrite->Signal(&lock);

else if (WR > 0)

okToRead->Broadcast(&lock);

lock.Release();

}

Questions:

1. Can readers starve?

2. Why does checkRead need a while?

CS 162 Spring 2004 Lecture 9 5/13

9.2 Comparison between semaphores and monitors

Illustrate the differences by considering: can we build monitors out of

semaphores? After all, semaphores provide atomic operations and queuing.

Does this work?

Wait() { semaphore->P(); }

Signal() { semaphore->V(); }

Condition variables only work inside of a lock. If you try to use semaphores

inside of a lock, you have to watch for deadlock.

Does this work?

Wait(Lock *lock) {

lock->Release();

semaphore->P();

lock->Acquire();

}

Signal() {

semaphore->V();

}

Condition variables have no history, but semaphores do have history.

What if thread signals and no one is waiting?

No op.

What if thread later waits?

Thread waits.

What if thread V’s and no one is waiting?

Increment.

What if thread later does P?

Decrement and continue.

CS 162 Spring 2004 Lecture 9 6/13

In other words, P + V are commutative – result is the same no matter what order

they occur. Condition variables are not commutative. That’s why they must be in

a critical section – need to access state variables to do their job.

Does this fix the problem?

Signal() {

if semaphore queue is not empty

semaphore->V();

}

For one, it is not legal to look at contents of semaphore queue. But, there is also a

race condition – signaler can slip in after lock is released, and before wait. Then

waiter never wakes up!

Program needs to release lock and go to sleep atomically.

Is it possible to implement condition variables using semaphores? Yes, but

exercise left to the reader!

9.3 Summary of Monitors

Monitors represent the logic of the program – wait if necessary, signal if change

something so waiter might need to wake up.

lock

while (need to wait) {

wait();

}

unlock

do something so no need to wait

lock

signal();

unlock

CS 162 Spring 2004 Lecture 9 7/13

CS 162 Spring 2004 Lecture 9 8/13

9.4 Language support for thread synchronization
The problem with requiring the programmer to specify both lock acquire and
release statements is that he might forget to put a release everywhere it is needed.

9.4.1 Languages like C
This is not too bad in a language like C: just make sure you know all the code
paths out of a critical section:

int Rtn() {

lock.acquire();

…

if (exception) {

lock.release();

return errReturnCode;

}

…

lock.release();

return OK;

}

Watch out for setjmp/longjmp! (Might happen in called procedure)

9.4.2 Languages like C++
Languages that support exceptions – like C++ – are more problematic:

void Rtn() {

lock.acquire();

…

DoFoo();

…

lock.release();

}

void DoFoo() {

…

if (exception) throw errException;

…

}

CS 162 Spring 2004 Lecture 9 9/13

Rtn() needs to catch the exception, release the lock, and then re-throw the exception:

void Rtn() {

lock.acquire();

try {

…

DoFoo();

…

}

catch (…) { // C++ syntax for catching any exception.

lock.release();

throw; // C++ syntax for re-throwing an exception.

}

lock.release();

}

9.4.3 Java
Java has explicit support for threads and thread synchronization.

Bank account example:

class Account {

private int balance;

// object constructor

public Account (int initialBalance) {

balance = initialBalance;

}

public synchronized int getBalance() {

return balance;

}

public synchronized void deposit(int amount) {

balance += amount;

}

Each Account object has an associated lock, which gets automatically acquired
and released on entry and exit from each synchronized method.

CS 162 Spring 2004 Lecture 9 10/13

Java also has synchronized statements:

synchronized (object) {

…

}

Every Java object has an associated lock. Any Java object can be used to control
access to a synchronized block of code. The synchronizing object’s lock is
acquired on entry and released on exit, even if exit is by means of a thrown
exception:

synchronized (object) {

…

DoFoo();

…

}

void DoFoo() {

…

throw errException;

…

}

How to wait in a synchronized method or code block:

• void wait(long timeout);
• void wait(long timeout, int nanoseconds);
• void wait();

How to signal in a synchronized method or code block:

• void notify(); wakes up the longest waiting waiter
• void notifyAll(); like broadcast,wakes up all waiters

CS 162 Spring 2004 Lecture 9 11/13

Notes:
• Only one condition variable per lock.
• Condition variables can wait for a bounded length of time. This is useful

for handling exception cases where something has failed. For example:

t1 = time.now();

while (!ATMRequest()) {

wait(LONG_TIME);

t2 = time.now();

if (t2 – t1 > LONG_TIME) CheckIfMachineBroken();

}

One reason why all Java Virtual Machines are not equivalent:

Different thread scheduling policies. The language specification does not stipulate
whether preemptive scheduling is required or what granularity of time slice
should be used if preemptive scheduling is provided.

9.5 Concurrency Summary

Basic idea in all of computer science is to abstract complexity behind clean

interfaces. We’ve done that!

Physical Hardware Programming Abstraction

Single CPU, interrupts, test&set Concurrent sequential execution, infinite

of CPUs, semaphores and monitors

Every major operating system built since 1985 has provided threads – Mach,

OS/2, NT (Microsoft), Solaris (SUN), OSF (DEC/Compaq Alphas), and Linux.

Why? Because makes it a lot easier to write concurrent programs, from Web

servers, to databases, to embedded systems.

So does this mean you should all go out and use threads?

CS 162 Spring 2004 Lecture 9 12/13

9.6 Cautionary Tale: OS/2

Illustrates why an abstraction doesn’t always work the way you want it to.

Microsoft OS/2 (around 1988): initially, a spectacular failure. Since then, IBM

has completely re-written it from scratch.

Used threads for everything – window systems, communication between

programs, etc. Threads are a good idea, right?

Thus, system created lots of threads, but few actually running at any one time – most

waiting around for user to type in a window, or for a network packet to arrive.

Might have 100 threads, but just a few at any one time on the ready queue. And each

thread needs its own execution stack, say, 9KB, whether it is runnable or waiting.

Result: system needs an extra 1 MB of memory, mostly consumed by waiting

threads. 1 MB of memory cost $200 in 1988.

Put yourself in the customer’s shoes. Did OS/2 run Excel or Word better? OK, it

gave you the ability to keep working when you use the printer, but is that worth

$200?

Moral: threads are cheap, but they’re not free.

Who are operating systems features for?

• Operating system developer?

• End user?

Lots of operating systems research has been focused on making it easier for

operating systems developers, because it is so complicated to build operating

systems.

But the trick to selling it is to make it better for the end user.

CS 162 Spring 2004 Lecture 9 13/13

So, why might making things easier for the OS developer be advantageous to the

end user and, more importantly, to the company selling the OS?

Things that make an OS slower will fail because the end user will see the

slowness. Things that are neutral to the end user, but enable better OS

development will succeed because of improved:

• Time-to-market

• Cost of maintenance

