
CS 162 Spring 2004 Lecture 8 1/10

CS 162 Operating Systems and Systems Programming
Professor: Anthony D. Joseph

Spring 2004

Lecture 8: Semaphores, Monitors, & Condition Variables

8.0 Main Points:

• Definition of semaphores

• Example of use of semaphores to solve the bounded buffer problem

• Definition of monitors and condition variables

• Demonstration of their use in Producer/Consumer problem

8.1 Motivation

Writing concurrent programs is hard because you need to worry about multiple

concurrent activities reading and writing the same memory. It is hard because

ordering matters.

Synchronization is a way of coordinating multiple concurrent activities that are

using shared state. What are the right synchronization abstractions, to make it

easy to build correct concurrent programs?

This lecture and the next, present a couple ways of structuring the sharing.

8.2 Definition of Semaphores

Semaphores are a kind of generalized lock, first defined by Dijkstra in the late

60’s. Semaphores are the main synchronization primitive used in the original

UNIX.

Semaphores have a non-negative integer value, and support the following two

operations:

CS 162 Spring 2004 Lecture 8 2/10

• semaphore->P(): an atomic operation that waits for semaphore to become

positive, then decrements it by 1. (Think of this as the “wait” operation)

• semaphore->V(): an atomic operation that increments semaphore by 1,

waking up a waiting P, if any. (Think of this as the “signal” operation)

Semaphores are like integers, except:

1. No negative values.

2. Only operations allowed are P and V – can’t read or write value, except to

set it initially.

3. Operations must be atomic: two P’s that occur together can’t decrement the

value below zero. Similarly, thread going to sleep in P won’t miss wakeup

from V, even if they both happen at about the same time.

Binary semaphore: like a lock (has a boolean value). Initialized to 1. P waits

until value is 1, and then sets it to 0. V sets value to 1, waking up a waiting P, if

any.

8.3 Two uses of semaphores

8.3.1 Mutual exclusion (initial value = 1)

Binary semaphores can be used for mutual exclusion: initial value of 1; P() is

called before the critical section; and V() is called after the critical section.

semaphore->P();

// critical section goes here

semaphore->V();

8.3.2 Scheduling constraints (initial value = 0)

Locks are fine for mutual exclusion, but what if you want a thread to wait for

something? For example, suppose you had to implement Thread::Join, which

must wait for a thread to terminate.

By setting the initial value to 0 instead of 1, we can implement waiting on a

semaphore:

Initial value of semaphore = 0

CS 162 Spring 2004 Lecture 8 3/10

Fork

Thread::Join calls P // will wait until something makes

// the semaphore positive.

Thread finish calls V // makes the semaphore positive

// and wakes up the thread

// waiting in Join.

8.4 Producer-consumer with a bounded buffer

8.4.1 Problem definition

Producer puts things into a shared buffer, consumer takes them out. Need

synchronization for coordinating producer and consumer.

Example: cpp | cc1 | cc2 | as | ld (cpp produces bytes for cc1, which

consumes them, and in turn produces bytes for cc2 ...)

Don’t want producer and consumer to have to operate in lockstep, so put a fixed-

size buffer between them; need to synchronize access to this buffer. Producer

needs to wait if buffer is full; consumer needs to wait if buffer is empty.

Another example: Coke machine. Producer is delivery person; consumers are

students and faculty.

Solutions use semaphores for both mutex and scheduling.

8.4.2 Correctness constraints for solution

1. Consumer must wait for producer to fill buffers, if none full (scheduling

constraint)

2. Producer must wait for consumer to empty buffers, if all full (scheduling

constraint)

3. Only one thread can manipulate buffer queue at a time (mutual exclusion)

General rule of thumb: Use a separate semaphore for each constraint.

Note how semaphores are being used in multiple ways.

Semaphore fullBuffers; // consumer’s constraint

CS 162 Spring 2004 Lecture 8 4/10

// if 0, no coke in machine

Semaphore emptyBuffers; // producer’s constraint

// if 0, nowhere to put more coke

Semaphore mutex; // mutual exclusion

CS 162 Spring 2004 Lecture 8 5/10

8.4.3 Semaphore solution

Semaphore fullBuffers = 0 // initially, no coke!

Semaphore emptyBuffers = numBuffers;

// initially, number of empty slots

// semaphore used to count how many

// resources there are!

Semaphore mutex = 1; // no one using the machine

Producer() {

emptyBuffers.P(); // check if there’s space

// for more coke

mutex.P(); // make sure no one else

// is using machine

put 1 Coke in machine

mutex.V(); // ok for others to use machine

fullBuffers.V(); // tell consumers there’s now a

} // Coke in the machine

Consumer() {

fullBuffers.P(); // check if there’s a coke in

// the machine

mutex.P(); // make sure no one else

// is using machine

take 1 coke out;

mutex.V(); // next person’s turn

emptyBuffers.V(); // tell producer we need more

}

8.4.4 Questions

• Why does producer P + V different semaphores than the consumer?

• Is order of P’s important?

• Is order of V’s important?

• What if we have 2 producers or 2 consumers? Do we need to change

anything?

CS 162 Spring 2004 Lecture 8 6/10

8.5 Motivation for monitors and condition variables

Semaphores are a huge step up; just think of trying to do the bounded buffer with

only loads and stores. But the problem with semaphores is that they are dual

purpose. They’re used for both mutex and scheduling constraints. This makes

the code hard to read, and hard to get right.

Idea in monitors is to separate these concerns: use locks for mutual exclusion and

condition variables for scheduling constraints.

8.6 Monitor Definition

Monitor: a lock and zero or more condition variables for managing concurrent
access to shared data

Note: Textbook describes monitors as a programming language construct, where

the monitor lock is acquired automatically on calling any procedure in a C++

class. No widely-used language actually does this however! (although Java

comes close, with its “synchronized” objects). In Nachos, and in many real-life

operating systems, such as Windows NT, OS/2, or Solaris, monitors are used with

explicit calls to locks and condition variables.

CS 162 Spring 2004 Lecture 8 7/10

Operating System Concepts Silberschatz and Galvin 19996.43

Monitor with condition variablesMonitor with condition variables

8.6.1 Lock

The lock provides mutual exclusion to the shared data. Remember:

• Lock::Acquire – wait until lock is free, then grab it

• Lock::Release – unlock, wake up anyone waiting in Acquire

Rules for using a lock:

• Always acquire before accessing shared data structure

• Always release after finishing with shared data.

• Lock is initially free.

CS 162 Spring 2004 Lecture 8 8/10

Simple example: a synchronized list

AddToQueue() {

lock.Acquire(); // lock before using

shared data

put item on queue; // ok to access shared

data

lock.Release(); // unlock after done

with shared

// data

}

RemoveFromQueue() {

lock.Acquire(); // lock before using

shared data

if something on queue // ok to access shared

data

remove it;

lock.Release(); // unlock after done

with shared

// data

return item;

}

8.6.2 Condition variables

How do we change RemoveFromQueue to wait until something is on the queue?

Logically, we want to go to sleep inside of the critical section, but if we hold the

lock when we go to sleep, other threads won’t be able to get in to add things to

the queue, to wake up the sleeping thread.

Key idea with condition variables: make it possible to go to sleep inside critical

section, by atomically releasing lock at same time we go to sleep

CS 162 Spring 2004 Lecture 8 9/10

Condition variable: a queue of threads waiting for something inside a critical
section

Condition variables support three operations:

• Wait() – Release lock, go to sleep, re-acquire lock

Releasing lock and going to sleep is atomic

• Signal() – Wake up a waiter, if any

• Broadcast() – Wake up all waiters

Rule: must hold lock when doing condition variable operations.

Note: In Birrell paper, he says can do signal outside of lock – IGNORE HIM (this

is only a performance optimization, and likely to lead you to write incorrect

code).

A synchronized queue, using condition variables:

AddToQueue() {

lock.Acquire();

put item on queue;

condition.signal();

lock.Release();

}

RemoveFromQueue() {

lock.Acquire();

while nothing on queue

condition.wait(&lock);// release lock; go to

 // sleep; re-acquire lock

remove item from queue;

lock.Release();

return item;

}

CS 162 Spring 2004 Lecture 8 10/10

8.6.3 Mesa vs. Hoare monitors

Need to be careful about the precise definition of signal and wait.

Mesa-style: (Nachos, most real operating systems)

• Signaler keeps lock, processor

• Waiter simply put on ready queue, with no special priority.

(in other words, waiter may have to wait for lock)

Hoare-style: (most textbooks)

• Signaler gives up lock, CPU to waiter; waiter runs immediately

• Waiter gives lock, processor back to signaler when it exits critical

section or if it waits again.

Above code for synchronized queuing happens to work with either style, but for

many programs it matters which one you are using. With Hoare-style, you can

change “while” in RemoveFromQueue to an “if”, because the waiter only gets

woken up if there’s an item is on the list. With Mesa-style monitors, waiter may

need to wait again after being woken up, because some other thread may have

acquired the lock, and removed the item, before the original waiting thread gets to

the front of the ready queue.

This means as a general principle, you almost always need to check the condition

after the wait, with Mesa-style monitors (in other words, use a “while” instead of

an “if”).

