CS 162 Operating Systems and Systems Programming
Professor: Anthony D. Joseph
Spring 2004

Lecture 6: Synchronization

6.0 Main points

* More concurrency examples
e Synchronization primitives

6.1 A Larger Concurrent Program Example

6.1.1 ATM bank server example

Suppose we wanted to implement a server process that handles requests from an
ATM network to do things like deposit and withdraw money from bank
accounts.BankServer () {
while (TRUE) {
Recei veRequest (&op, &acctld, &anmount);
ProcessRequest (op, acctld, amount);

}

ProcessRequest (op, acctld, anount)
if (op == deposit) Deposit(acctld, anount);
else if

}

Deposi t (acctld, anount) {
acct = GetAccount(acctld); /* May involve disk I/O*/
acct - >bal ance += anount;
St oreAccount (acct); /* Involves disk 1/0 */

}

Suppose we had a multiprocessor? Could run each invocation of ProcessRequest
in a separate thread to get parallelism.

Suppose we only had one CPU. We’d still like to overlap I/O with computation.
Without threads we would have to rewrite the code to look something like:

CS 162 Spring 2004 Lecture 6 1/8

BankServer () {
while (TRUE) {
event = Wit For Next Event () ;
if (event == ATMRequest)
St art OnRequest () ;

else if (event == AcctAvail)
Cont i nueRequest () ;
else if (event == Acct Stored)

Fi ni shRequest () ;
}

With threads one could get overlapped I/O and computation without having to
“deconstruct” the code into fragments that run when the appropriate asynchronous
event has occurred.

Problem: In the threaded version shared state can get corrupted:

Thread 1 running Deposit: Thread 2 running Deposit:

load r1, acct->balance load r1, acct->balance
add r1, anount2
store rl1, acct->bal ance

add r1, anountl
store rl1, acct->bal ance

The dispatcher can choose to run each thread to completion or until it blocks. It
can time-slice in whatever size chunks it wants. If running on a multiprocessor
then instructions may be interleaved one at-a-time.

Threaded programs must work correctly for any interleaving of thread
instruction sequences.

Cooperating threaded programs are inherently non-deterministic and non-
reproducible. This makes them hard to debug and maintain unless they are
designed very carefully.

6.1.2 Another concurrent program example

CS 162 Spring 2004 Lecture 6 2/8

Two threads, A and B, compete with each other; one tries to increment a shared 3:20 Arrive home, put milk away. Arrive at store.

counter, the other tries to decrement the counter. 3:25 Buy milk, .
3:30 Atrrive home, put milk away.
Oh no!

For this example, assume that memory load and memory store are atomic, but

incrementing and decrementing are not atomic.

6.3 Definitions

Thread A Thread B
i =0 i =0 Lo
. . . . Synchronization: using atomic operations to ensure cooperation between threads.
while (i < 10) while (i > -10)
=0+ 1 =i -1
print A wns print B wns
Mutual exclusion: ensuring that only one thread does a particular thing at a time.
One thread doing it excludes the other, and vice versa.
Questions:

1. Who wins? Could be either.

2. Ts it guaranteed that someone wins? Why not? Critical section: piece of code that only one thread can execute at once. Only

3. What if both threads have their own CPU, running in parallel at exactly the one thread at a time will get into the section of code.

same speed. Is it guaranteed that it goes on forever?
In fact, if they start at the same time, with A 1/2 an instruction ahead, B will win Lock: prevents someone from doing something.

quickly.
1. Lock before entering critical section, before accessing shared data

2. Unlock when leaving, after done accessing shared data
3. Wait if locked

* Key idea — all synchronization involves waiting.

4. Could this happen on a uniprocessor?

Yes! Unlikely, but if you depend on it not happening, it will happen, and your 6.4 Too Much Milk: Solution #1

system will break and it will be very difficult to figure out why.

What are the correctness properties for the too much milk problem?
* Never more than one person buys

6.2 Motivation: “Too Much Milk”

* Someone buys if needed

Person A Person B
3:00 Look in fridge. Out of milk. Restrict ourselves to only use atomic load and store operations as building blocks.
3:05 Leave for store.
3:10 Arrive at store. Look in fridge. Out of milk.
3:15 Buy milk. Leave for store.

CS 162 Spring 2004 Lecture 6 3/8 CS 162 Spring 2004 Lecture 6 4/8

Basic idea of solution #1:
1. Leave a note (kind of like “lock”)
2. Remove note (kind of like “unlock™)
3. don’t buy if note (wait)

Solution #1:

if (noMIk) {
if (noNote){
| eave Note;
buy milk;

renove note;

Why doesn’t this work? Thread can get context switched after checking milk and
note, but before buying milk!

Our “solution” makes problem worse — fails only occasionally. Makes it really

hard to debug. Remember, constraint has to be satisfied, independent of what the
dispatcher does — timer can go off, and context switch can happen at any time.

CS 162 Spring 2004 Lecture 6 5/8

6.5 Too Much Milk Solution #2

How about labeled notes? That way, we can leave the note before checking the

milk.

Solution #2:
Thread A
| eave note A
if (noNote B){
if (noMIk)
buy mlk
}

remove note A

Thread B
| eave note B
if (noNoteA){
if (noMIKk)
buy milk
}

remove note B

Possible for neither thread to buy milk; context switches at exactly the wrong

times can lead each to think the other is going to buy.

Tllustrates starvation: thread waits forever

6.6 Too Much Milk Solution #3

Solution #3:

Thread A

| eave note A

while (note B) // X
do not hi ng;

if (noMIk)
buy mi |l k;

renove note A

Thread B
| eave note B
if (noNoteA){ // Y
if (noMIk)
buy m Ik
}

remove note B

Does this work? Yes. Can guarantee at X and Y that either

(i) safe for me to buy
(i) other will buy, ok to quit

CS 162 Spring 2004 Lecture 6

6/8

AtY: if noNote A, safe for B to buy (means A hasn’t started yet)
if note A, A is either buying, or waiting for B to quit,
so ok for B to quit

At X: if nonote B, safe to buy
if note B, don’t know. A hangs around. Either:
if B buys, done
if B doesn’t buy, A will.

6.7 Too Much Milk Summary

Solution #3 works, but it’s really unsatisfactory:

1. Really complicated — even for this simple an example, hard to convince
yourself it really works

2. A’s code different than B’s — what if lots of threads? Code would have to be
slightly different for each thread.

3. While A is waiting, it is consuming CPU time (busy-waiting)

There’s a better way.

1. Have hardware provide better (higher-level) primitives than atomic load and
store. Examples in next lecture.

2. Build even higher-level programming abstractions on this new hardware
support. For example, why not use locks as an atomic building block (how
we do this in the next lecture):

Lock: : Acqui r e — wait until lock is free, then grab it
Lock: : Rel ease — unlock, waking up a waiter if any

These must be atomic operations — if two threads are waiting for the lock, and

both see it’s free, only one grabs it!

With locks, the too much milk problem becomes really easy!
| ock->Acquire();
if (nomilk)
buy mlk;

CS 162 Spring 2004 Lecture 6 7/8

| ock->Rel ease();

CS 162 Spring 2004 Lecture 6

8/8

