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Abstract— In this paper we introduce a new practical frame-
work, called P4P (Peers for Privacy), for privacy-preserving
data mining. P4P features a hybrid architecture combining
P2P and client-server paradigms and provides practical private
protocols for user data validation and general computation. The
architecture is guided by the natural incentives of the participants
and allows the computation to be based on verifiable secret
sharing (VSS) where arithmetic operations are done over small
fields (e.g. 32 or 64 bits), so that private arithmetic operations
have the same cost as normal arithmetic. Verification of user data,
which uses large-field public-key arithmetic (1024 bits or more)
and homomorphic computation, only requires a small number
(constant or logarithmic in the size of user data) of large integer
operations. The solution is extremely efficient: In experiments
with our implementation, verification of a million-element vector
takes a few seconds of server or client time on commodity PCs (in
contrast, using standard techniques takes hours). This verification
can be used in many privacy-preserving data mining tasks to
detect cheating users who attempt to bias the computation by
submitting exaggerated values as their inputs. As an example,
we demonstrate how association rule mining can be done in the
P4P model with near-optimal efficiency and provable privacy.

I. INTRODUCTION

Privacy has become an increasingly important issue in data
mining. With the rapid growth of the Internet and the advance
in microprocessors and algorithms, collecting and processing
large amount data is becoming commercially viable. The
potential for offering valuable services by mining information
and knowledge from user data is great, so is the risk of privacy
infringement.

Privacy-preserving data mining is an area of active research.
Using [1]’s categorization, existing solutions basically fall into
one of two models. The first is called server-to-server (S2S)
where data is distributed across several servers. In the second
model, on the other hand, data resides on each client and a
server, or a data miner, performs mining tasks on the aggregate
data from the clients. This model is denoted client-to-server
(C2S) in [1].

In the S2S model, data records can be partitioned either
horizontally or vertically. Horizontal partition refers to the
cases where complete records for a subset of entities reside
on each site (e.g. [2], [3]), while vertical partition means that
each site holds a subset of the attributes for all entities [4], [5].
Existing privacy schemes in these models provide solutions

for a number of data mining tasks such as classification [6],
clustering [5], decision tree classification [3], etc.

In this paper we introduce a new private computation frame-
work called Peers for Privacy (P4P) and show its potential in
privacy-preserving data mining. In particular we demonstrate
P4P’s application in data mining with an efficient solution for
privacy-preserving association rule mining over horizontally
partitioned databases. P4P was introduced in [7] as a practical
framework for performing accurate computation with guaran-
teed privacy. Its architecture is similar to the C2S model. The
difference is that a small subset of the users, called privacy
peers, also participate in the computation. This arrangement
not only accommodates a large number of existing server-
based schemes, making their computation privacy-preserving
with small changes to their existing infrastructure, but also
allows us to take advantage of many powerful centralized
tools such as linear algebra packages ARPACK, LAPACK, etc,
which is not possible with a purely peer-to-peer approach. The
involvement of privacy peers allows information to be shared
among multiple participants, instead of residing on a single
entity, and the computation can be based on verifiable secret
sharing instead of homomorphic encryption as is done in [8]
and [9] etc. The resulting scheme is much more efficient and
practical because secret sharing can be done over small field
where arithmetic operations are orders of magnitude faster
than those performed in large field needed for homomorphic
encryption. In any private computation scheme, to ensure
correctness, it is necessary to verify, without leaking additional
information, certain properties of the computation or data since
now the raw data is private. Such verification typically involves
cryptographic operations with large integers (e.g. public key
encryption using keys with sufficient length, exponentiation
in DDH groups, etc). P4P features novel zero-knowledge
protocols for such verification that only require a small number
(constant or logarithmic in the size of user data) of large
integer operations. P4P supports general computation of any
arithmetic circuit over finite field consisting of addition and
multiplication gates. 1 However, this paper focuses on those
algorithms that can be implemented via iterative vector aggre-
gation steps which involve only addition and are substantially

1P4P’s support for multiplication is work in progress.



more efficient than multiplication. Private vector addition in
P4P is very efficient, actually as efficient as its centralized,
non-private implementation. This remains true even with a
zero-knowledge verification that checks that the L2 norm of
user’s vector is bounded by a predefined limit 2 because the
this verification only incurs a small number of large integer
operations and the cost is still dominated by the linear number
of small field arithmetic operations. In this sense P4P provides
privacy for vector addition-based algorithms almost for free
and becomes a practical framework for many data mining tasks
that can be built upon such algorithms.

A. Vector Addition-based Algorithms

Surprisingly, vector addition is a very general tool for many
practical algorithms. Examples include linear algorithms like
voting and summation, as well as non-linear algorithms such as
singular value decomposition (SVD), link analysis, regression,
analysis of variance (ANOVA) and several machine learning
algorithms based on Expectation Maximization (EM) (such
as [10]). These methods represent many of the most accurate
algorithms for e-commerce personalization and targeted mar-
keting etc. The non-linear algorithms aggregate user data only
in certain steps, such as conjugate gradient, which are linear
in per-user data thus can be built upon vector-addition. This
has been demonstrated for SVD in [9] and link analysis in
[11].

The rest of the paper is organized as follows. In Section II
we give an overview of the P4P framework. Section III states
P4P private computation model. We describe association rule
mining problem in Section IV. In Section V, we show how
association rule mining can be done in the P4P framework
with high efficiency and guaranteed privacy. We further discuss
our solution in Section VI. Section VII examines previous
solutions and other related research. Finally we discuss current
status and future directions in Section VIII.

II. P4P: AN OVERVIEW

P4P supports mining of data collected from a group of users.
In P4P, we assume there is a single computer called the server,
which is operated by a service provider or a data miner. Unlike
other server-based solutions such as [8], P4P also involves a
(small) number of designated parties called privacy peers (PP)
to participate in the computation. In contrast to previous work,
privacy peers do not have to be dedicated servers and can
belong to users in the community. The fundamental role of
the privacy peers is to remove data control from the server by
participating in the computation so that no one in the system,
except for the owner herself, has access to user’s data. Privacy
peers are not required to be honest, and the protocol ensures
that they cannot break the privacy of the protocol without the
server’s help.

This architecture is a hybrid of client-server and P2P. On
one hand, the server shares the bulk of the computation and

2The verification is to prevent a user from exerting too much influence on
the computation. It only uses a small number of cryptographic operations.
The total cost is still dominated by the regular arithmetics.

storage, and also synchronizes the protocol. This allows us to
take advantage of its large computation/storage capacity and
high availability. It also leads to practical, efficient protocols
that are not possible with fully distributed architecture. On the
other hand, the peers also participate in the computation and
provide privacy. This particular architecture is motivated by
several practical considerations:

• Client-server is the de facto business and service model
for most existing service providers. It is unlikely that they
will be willing to abandon their existing infrastructure for
the sake of providing users with privacy.

• In a purely serve-based system, there is a tremendous
power imbalance between the service provider, who pos-
sesses all the information and controls who can access to
it, and the client users. This imbalance is prevalent in al-
most all aspects of their relationship including economic,
information access, and computing etc.

• Any privacy enhancing technology will inevitably reduce
the amount of user information that a service provider
can collect and entail additional cost. Understandably,
the service providers will be reluctant to adopt them.
For any technological solutions to be viable, (1) it must
be efficient: the cost for privacy protection should be
small, ideally free, compared to the main computation;
(2) the service provider’s incentives must be taken into
consideration.

• The power imbalance and the lack of incentive can
be offset by the active participation of users/peers. At
minimum, privacy protection requires user awareness and
control of the collecting and use of personal information.
Given the dominance and the reluctance on the server
side, users must be involved in the loop to secure and
verify the protection.

• Current distributed multiparty computation protocols
have computation and communication complexity at least
quadratic in the number of participants, with large hidden
constant in the asymptotic complexity, and are not practi-
cal for large scale systems. But for many applications, the
more users involved, the better quality the computation
results are. Such applications are prevalent in data mining.
The minimal scale required by such applications makes it
infeasible to carry out the computations among the users.

P4P accommodates service provider’s existing business
model while taking advantage of participants’ heterogeneity
that exists in real-world systems. The server, which is powerful
and highly available, is still responsible for most of the com-
putation/storage but the privacy peers work with the users to
provide privacy. This arrangement allows us to use a verifiable
secret sharing (VSS)-based paradigm for computation which
can be executed in regular-sized (32- or 64-bit) fields. Big
integer field is used only for verification which involves only
a small number (constant or O(log m) where m is the size
of user data) of big integer operations. This avoids the pitfall
of generic MPC protocols (e.g. [12], [13], [14], [15]) which
work in the big field all the time. On a typical computer



today there is a six order of magnitude difference between the
big integer cryptographic operations (order of milliseconds)
and regular arithmetic operations (fraction of a nano-second).
In P4P the cost is dominated by the regular arithmetic that
one would have to pay even in a server-based, non-private
scheme. In addition, P4P computes a function over data from
all n users but it does not use an n-party protocol. Instead,
computation in P4P consists of a number of independent,
parallel pairwise two-party protocols between the server and
one privacy peer. Each privacy peer services a small subset of
users and each pairwise computation produces aggregate over
this subset and the server further aggregate them to produce the
final sum. Compared to a fully distributed multiparty scheme,
by restricting the number of players to 2 in each pairwise
computation, many expensive operations such agreement are
made efficient. We can show that private computation in P4P is
almost as efficient as regular, centralized arithmetic operations.
In this sense, P4P adds privacy at almost no cost to the service
provider and provides a practical solution for large scaled
private computation tasks.

The candidates for the privacy peers may differ with ap-
plications. Since they are not trusted and cannot compromise
user data, there are many options. It has been demonstrated
that in practical P2P systems such as Gnutella and Napster,
a small fraction of the users in the community provide most
of the services to the others. The existence of such altruistic
users is a pervasive phenomenon in communities and those
users can provide the computation cycles for the privacy peers.
In this case, we assume a much smaller ratio between peer
and users, e.g. while a single server would normally serve
millions of users, an individual privacy peer would support
a few hundreds to perhaps tens of thousands of users. For
workplace privacy, the peer would be a special employee (e.g.
a union representative). The service may also be provided
for a fee by a third-party commercial “privacy provider”.
In certain cases, it may be feasible to distribute the VSS
among service providers. For example, two hospitals may
wish to mine data collected from patients. However, it is not
desirable to disclose patients’ private information. Indeed, in
many countries, legal privacy rules even prohibit health care
providers from disclosing customers information, even to other
providers. In this case P4P can be used to support this type
of data mining by letting one of the service providers assume
the role of a privacy peer in the protocol and the result is that
both hospitals learn the accurate (aggregate) final computation
but neither learns anything about users private data.

In addition to computation support, P4P also provides some
highly efficient tools. All of them are zero-knowledge (i.e.
they reveal no information other than what is being verified)
protocols that involve only constant or logarithmic (in the
size of user data) public-key operations. They include a user
data validation protocol that verifies that the L2 norm of user
vector is within a predefined bound and a zero-knowledge test
of vector equality [16]. These are for dealing with cheating
users who may wish to bias the computation by submitting
exaggerated values as their inputs, which is a realistic threat

in real-world applications but often ignored by many schemes
such as [8].

P4P does not overthrow existing systems. Instead, it offers a
way to “patch” them, with minimum impact on performance,
to provide provable privacy for the users while maintaining the
accuracy of the computation. This approach is applicable to a
large number of existing and emerging real-world applications
and is more realistic to guarantee adoption.

A. Security from Heterogeneity

The security of a P4P system is based upon the assumption
that the server and the privacy peers won’t collude (the
corrupted privacy peers may collude with cheating users or
other peers). We show why this is realistic.

Collusion comes in two forms:
1) The owners of the two machines conspire and share data

and coordinate their actions;
2) An attacker (who can be one of the two players) corrupts

both machines.
These two attacks, although often handled uniformly in most
schemes, rely on different conditions to be successful: for two
players to conspire, they must have the right incentive, which
may come from anticipated benefit out-weighting foreseeable
risk, and overcome the mutual distrust between them. For an
adversary to corrupt both machines, it must penetrate the armor
of the better protected one. P4P defends against them with
different mechanisms, targeting at their individual conditions.
Concretely, we make the following observations/assumptions:

1) The server is well protected against outside attacks.
2) The server and the privacy peers won’t conspire and

share data between each other.
3) The owner of the server won’t attempt to break into

peers’ machines.
All three are provided by exploiting the asymmetry between

server and privacy peer, which is an important source of
security. While peer machines are not always well maintained,
cooperations invest large amount of resources protecting their
servers. On the other hand, collusion means exchange of data
between the server and the privacy peer. Both will be aware
of the cheating. In many situations there is a mutual distrust
between the two which means neither can trust the other not to
leak the plot. And the owner of the server, which is typically
a big company, is usually in the spotlight of scrutiny, by the
media, law enforcement, the competitors and the customers,
etc., and the exposure of breach of its privacy policy is a big
scandal that it cannot afford.

In essence, by exploiting the difference in their incentives,
the heterogeneity of their individual protection, and the mutual
distrust among the participants, P4P is made efficient yet
secure. In a nutshell, our system relies on the server for
defending against external attacks and uses the privacy peers
to protect user privacy against a curious server. In practice
the protection offered by this arrangement is very good com-
pared to multi-server approaches. And economically, the P4P
approach is superior since it requires no additional resources
on the server side.



III. THE P4P PRIVATE COMPUTATION

A. Preliminaries

Let φ be a small integer 3 (e.g. 32 or 64 bits). Our goal is
to support “normal”-sized integer (or fixed-point) arithmetics.
This is what most applications need and the arithmetics are
extremely efficient when each integer fits into a single memory
cell. To provide information-hiding, we use a (2, 2)-threshold
secret sharing to embed this integer range in the additive
group of integers modulo φ. To support signed values, which
is what most applications require, we consider the specific
coset representatives of the integers mod φ in the range
−�φ/2�, . . . , �φ/2� if φ odd, or −�φ/2�, . . . , �φ/2� − 1 if
φ even. We use Zφ to denote this field.

Let di ∈ Z
m
φ be an m-dimensional data vector for user i.

Throughout this paper, unless explicitly stated, all vectors are
column vectors. We use v[i] to denote the ith element of a
vector v. We also use |a| to denote the bit length of an integer
a in its binary representation.

Similar to [7], we describe our protocols as 2-way multi-
party computations carried out between the server and a
privacy peer who are referred collectively to as talliers. In
this paper we denote the server T1 and the privacy peer T2.
The entire P4P computation is composed of a number of such
independent pair-wise computations.

We assume the two talliers follow the protocol faithfully.
This corresponds to a semi-honest model in cryptographic
terms (e.g. [13]). In many applications both the server and
the peers benefit from accurate computation. For example,
the scheme can be a recommendation system hosted by an
e-commerce vendor. The vendor can optimize its business
strategy while the peers/users can obtain high-quality rec-
ommendations from accurate data mining computation. Or
it can also be that two research institutes wish to perform
computation on user data and they each participate in the
protocol as a tallier. In both cases neither should have the
incentive to bias the computation and a passive model is
appropriate. The P4P framework can handle active cheating
from privacy peers (without much loss of efficiency) but for
simplicity of description we do not pursue this in this paper.
Please refer to [7] for details. Note that we allow the users
to behavior arbitrarily and we provide a mechanism to detect
and handle active user cheating.

B. Basic P4P Vector Aggregation

Let Q = {1, . . . , n} be the initial set of qualified users. The
basic vector aggregation in P4P is carried out as follows:

1) User i generates a uniformly random vector ui ∈ Z
m
φ

and computes vi = di −ui mod φ. She sends ui to T1

and vi to T2.
2) User i gives a ZK proof to both talliers that ‖di‖2 < L

using the protocol described in [7]. If she fails to do so,
both talliers exclude her from Q.

3It does not have to be a prime since the computation only involves addition.

3) T1 computes µ =
∑

i∈Q ui mod φ and T2 computes
ν =

∑
i∈Q vi mod φ. T2 sends ν to T1, and T1 sends

µ to T2.
4) T1 publishes s = µ + ν mod φ.

The correctness is straightforward to verify. The privacy can
be easily proven using a simulator who, given only the public
sum, could generate random shares for the corrupted tallier,
and produce the data received from the other tallier by simple
subtraction. This is indistinguishable from the actual data that
the corrupted tallier receives in a real execution of the protocol.
This essentially shows that whatever information about user
data an adversary can obtain from attacking the protocol can
be generated by itself (by running the simulator) thus there is
no leakage beyond the sum. For detailed proof please see [7].

IV. MINING ASSOCIATION RULE OVER PRIVATE DATA

The association rule mining [17] is still one of most popular
pattern-discovery methods in the field of knowledge discovery.
Briefly, an association rule is an expression X ⇒ Y , where
X and Y are sets of items. The meaning of such rules is
as follows: Given a database D of records, X ⇒ Y means
that whenever a record R contains X then R also contains Y
with certain confidence. The rule confidence is defined as the
percentage of records containing both X and Y with regard
to the overall number of records containing X . The fraction
of records R supporting an item X with respect to database
D is called the support of X .

A. Distributed Association Mining

Let n be the total number of users and m be the total number
of items. User i maintains a private data set Di, i = 1, 2, . . . , n
(which may contains e.g. her purchase records). The data set
[D1 ∪ D2 ∪ · · · ∪ Dn] forms a database, which is actually
the concatenation of D1, D2, · · · and Dn. The database can
be represented by a n × m boolean matrix x where xij =
1 if record i contains item j and 0 otherwise. We consider
horizontally partitioned database [18] where each user’s data
set contains the same attributes. Without causing confusion,
we also use Di to denote the rows of the matrix x maintained
by user i.

The goal is to conduct association rule mining on [D1 ∪ D2

∪ · · · ∪ Dn] and to find the association rules with support
and confidence being greater than the given thresholds. We
say an association rule (e.g., X ⇒ Y ) has confidence c% in
the data set [D1 ∪D2 ∪ · · · ∪Dn] if in [D1 ∪D2 ∪ · · · ∪Dn]
c% of the records which contain X also contain Y (namely,
c% = P (Y | X)). We say that the association rule has
support s% in [D1 ∪ D2 ∪ · · · ∪ Dn] if s% of the records
in [D1 ∪ D2 · · · ∪ Dn] contain both X and Y (namely,
s% = P (X ∩Y )). Consequently, in order to learn association
rules, one must compute the candidate itemsets, and then
prune those that do not meet the preset confidence and support
thresholds. In order to compute confidence and support of a
given candidate itemset, we must compute, for a given itemset
C, the frequency of attributes (items) belonging to C in the
entire database (i.e., we must count how many attributes in



C are present in all records of the database, and divide the
final count by the size of the database which is m.) Note that
association rule mining works on binary data, representing
presence or absence of items in transactions. However, the
proposed approach is not limited to the assumption about the
binary character of the data in the content of association rule
mining since non-binary data can be transformed to binary
data via discreterization.

B. Association Rule Mining Procedure

The following is a fast algorithm for mining association
rules on [D1 ∪ D2 · · · ∪ Dn], introduced in [19]:

1) L1 = large 1-itemsets
2) for (k = 2;Lk−1 �= ∅; k + +) do begin
3) Ck = apriori-gen(Lk−1)
4) for all candidates c ∈ Ck do begin
5) Compute c.count
6) end
7) Lk = {c ∈ Ck|c.count ≥ min-sup}
8) end
9) Return L = ∪kLk

At line 5 in the above procedure, c.count divided by the
total number of records is the support of a given item set. We
will show how to compute it in Section IV-C.

The procedure apriori-gen is described in the following
(please also see [17], [19] for details).

apriori-gen(Lk−1: large (k − 1)-itemsets)

insert into Ck

select p.item1, p.item2, . . ., p.itemk−1,q.itemk−1

from Lk−1 p, Lk−1 q
where p.item1 = q.item1, . . ., p.itemk−2 = q.itemk−2

p.itemk−1 < q.itemk−1;

Next, in the prune step, we delete all itemsets c ∈ Ck

such that some (k − 1)-subset of c is not in Lk−1:

∀ itemsets c ∈ Ck do
∀ (k − 1)-subsets s of c do

if(s /∈ Lk−1) then
delete c from Ck;

C. Computing c.count

In the procedure of association rule mining for horizontal
partition, each party computes the partial c.count based on
their own data. Without loss of generality, let’s assume that
user i maintains c.counti, i = 1, . . . , n. The goal is to compute
the c.count which equals to

∑n
i=1 c.counti without disclosing

c.counti to party j where i �= j. In the next section, we
will provide a privacy-preserving protocol to compute this
summation under P4P framework.

V. ASSOCIATION RULE MINING IN P4P

Algorithm apriori-gen is to generate a superset of possible
candidate itemsets and then prune it to get Ck. We use the
P4P vector aggregation and verification protocols to compute
c.count for all c ∈ Ck as one P4P aggregation step.

Recall that Di is the data set of party i. In the case of
horizontal partition, Di is essentially a number of rows of
items. At step k of the above algorithm, let mk = |Ck| and
Ck = {c1, . . . , cmk

}. The protocol is as follows:

1) User i constructs an mk-dimensional vector d
(k)
i ∈ Z

mk

φ

such that

d
(k)
i [j] =

∑

r∈Di

(
∏

l∈cj

xrl)

2) User i then inputs d
(k)
i into the P4P protocol. She also

provides a zero-knowledge proof that her data is valid
using the technique that will be elaborated later. If the
user fails the proof, the server and the privacy peers
exclude her data from subsequent computation.

3) Let s(k) =
∑

d
(k)
i be the output of the P4P aggregation.

The desired counts are simply cj .count = s(k)[j], j =
1, . . . ,mk.

At the first step, for all the rows in her data set, for each
itemset cj ∈ Ck, the user computes the product of all the
attributes in cj . She then add these products across all the
rows in her block. This is the j-th elements in di. Clearly, this
is the number of rows in her data set containing the itemset
cj . By aggregating these vectors across all users, P4P outputs
the total number of rows containing all itemsets cj ∈ Ck in
the entire database [D1 ∪ D2 ∪ · · · ∪ Dn].

At step 2, the user is required to prove, in zero-knowledge,
that her data is valid. There are two ways to accomplish this
that can be used in different situations. When k is small, there
hasn’t much pruning yet so the candidate set Ck tends to be
quite large. For typical data such as web pages or vendor
inventory, mk can be in the range of billions or millions. In
this case the validation protocol introduced in [7] should be
used with a bound

L = α
√

mk|Di|
where 0 < α ≤ 1.
This protocol verifies that the L2 norm of the user vector

is bounded by L without leaking any information about the
data. The P4p’s protocol is extremely efficient and takes only
a few seconds to validate a vector of a million elements on
commodity PCs (in contrast, using standard techniques takes
hours).

At the later steps of the algorithm when k is large, Ck can
become small since it has gone through many iterations of
pruning. In this case one can apply the ZK boundedness proof
directly on each of di’s elements to verify that all of them are
bounded by |Di|. Please see [7] and [20] for details.



VI. DISCUSSION

A. Privacy Analysis

The privacy of our solution is straightforward to analysis. As
is proven in [7], the P4P aggregation and validation do not leak
any more information about individual user data other than
what can be inferred from the final results. And the results are
just the supports of the itemsets that we are computing. These
have been treated as public data by many private association
rule mining schemes (e.g. [4], [21]).

B. Near Optimal Efficiency

In a realistic association rule mining application, the scale
of the problem is typically quite large. For example, WalMart
sells over 100,000 items. And the web has billions of web
pages. When mining association rules using the a priori algo-
rithm over such datasets, Ck may contain millions of itemsets.
For any solutions to be practical, they must be efficient enough
to handle dataset of such scale.

The P4P solution is near optimal in that its cost is com-
parable to that of a distributed, non-private implementation of
the a priori algorithm. For each iteration, computing c.count
for all c ∈ Ck is simply one single P4P vector aggregation.
And since the P4P’s main computation (which has complexity
O(mk|Di|) for party i) is done over small field (32- or 64-
bit) and has the same cost as regular, non-private arithmetic,
compared to a server-based, non-private implementation of the
algorithm, the computation overhead for each user in P4P
is only doubled while that for the server remains the same.
Verification is done in large field but the number of such
operations is only O(log mk). This is one of the important
features provided by the P4P framework and it guarantees that
the privacy mechanism causes little overhead for the server or
the privacy peers, which are the bottlenecks of the system.
Using the benchmark obtained by the P4P implementation
in [7], verification of a million element vector takes only a
few seconds of user and server time. The same task takes
hours using other solutions. In a sense P4P provides privacy
to association rule mining applications almost for free.

C. Dealing with Malicious Users

A lot of private data mining schemes such as [8] cannot
deal with active cheating from users (in cryptographic terms,
their schemes are only secure passive adversary). However,
in any realistic applications, users often pose active threats.
A user may submit invalid data, or refuse to participate in
the computation at all. A competitor of the data mining
service provide can easily disguise as a user and disrupt the
computation.

In our scheme we use P4P’s efficient built-in zero-
knowledge user data validation protocol to verify that a user
cannot exert too much influence on the computation. The
bound used in the protocol should be at most

√
mk|Di|

(corresponding to the case of setting α = 1), but usually
substantially smaller, determined by the application based on
the estimate on the distribution of the raw data. The check
is not tight in that a cheating user can still falsify her data

without being detected. However, the effectiveness of her
cheating is limited (by the bound) and assuming a reasonably
large fraction of users are honest (otherwise there is no point
running the data mining algorithm anyway), cheating users
cannot cause too much change to the result.

In addition, our solution features a simple cheating user
handling mechanism. When a user is detected cheating by
P4P’s validation protocol, we simply disqualify her from the
computation for future steps. This is equivalent to setting all
her entries to 0s for the rest of the computation. The results
from previous steps may not be very accurate but generally
there is no need to redo them. This is because the validation
ensures that if a user tries to manipulate the support of an
itemset by increasing her data in the corresponding entry by a
large amount, she will be detected. So the only undetectable
cheating is to increase the value by a small amount or decrease
it. If the user only holds a few rows of the database, which
typically should be the case for typical user-based mining,
neither should have big influence on the computation since we
are aggregating across a large number of users and most of
them are honest. If, on the other hand, she holds a large trunk
of the database, the server and the privacy peers can simply
exchange the shares of her data and reconstruct her original
vector d

(1)
i . They then correct the results by subtracting all

cheating users data from the aggregation. The correction is
done in public, in regular-sized field and should be very
efficient.

VII. RELATED WORK

Theoretically, the data mining tasks performed by P4P can
be done with secure multiparty computation (MPC) protocols,
which provide general solutions for computing any proba-
bilistic n-ary function among n players while protecting each
player’s private data [22], [23], [12], [13], [14]. The prob-
lem with the MPC protocols is their prohibitive cost. These
protocols make heavy use of public-key cryptosystems or one-
way functions, applying verifications or ZKPs at most steps,
and some even operate at bit-level (rather than on arithmetic
values). Even those arithmetic protocols typically have at least
O(sn3) computation and communication complexity, with
large hidden constant, where s is a security parameter. 4

Existing privacy-preserving data mining solutions use either
randomization (e.g. [27], [28]) or cryptographic techniques
(e.g. [3], [6], [5], [8], [29]) to protect privacy. The first
approach, besides sacrificing accuracy, has been shown to
provide very little privacy protection in many cases [30]. Most
of the cryptographic schemes use some form of MPC (e.g. [3],
[6], [5] or homomorphic encryption [8], [29]. They attempted
to obtain reasonable efficiency by targeting at specific prob-
lems or restricting the number of players.

4For addition only functions some protocols only require O(n) broadcasts
(e.g. [24], [25]). However, broadcast has to be emulated with Byzantine
agreement protocols in a realistic network such as the Internet. The most
efficient broadcast protocols require Ω(n2l) bits to be sent for broadcasting
an l-bit message [26].



P4P is also in the cryptographic category but it provides a
more general primitive and much better efficiency. Its private
vector addition protocol works in “normal” size (32 or 64 bits)
fields so local computation is as efficient as regular arithmetics.
All its zero-knowledge verifications [7], [16] involves only
small (constant or log(m)) number of big field operations thus
adding very little cost.

VIII. CONCLUSION AND FUTURE WORK

In this paper we described potential applications of a new
private computation framework, Peers for Privacy, to the area
of data mining. We demonstrated the application of P4P in
privacy-preserving association rule mining over horizontally
partitioned data. The scheme is near optimal in terms of
efficiency and robust against active cheating from malicious
users.

The P4P framework and the protocols described in this
paper are being actively developed and its feasibility has
been demonstrated by evaluations with current implementation
on real-world datasets. In the near future, we plan to build
more “middle tier” components to support more concrete
applications. Our goal is to make P4P a useful tool for
developers in areas such as data mining and others to build
privacy preserving real-world applications.
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