Networked System Management: Topology Discovery and Host Monitoring and Control

CS252 Project Spring 2001

Professor David A. Patterson

Yitao Duan and Dawey Huang

Department of Electrical Engineering and Computer Science

Unversity of California, Berkeley

Berkeley, CA

duan@eecs.berkeley.edu, dhwh@uclink4.berkeley.edu
Abstract

Computer systems are becoming more and more complex and managing them efficiently poses a challenge for system administrators. The increased complexity results from the following two trends in computer system development. 1) An individual computer, with the adoption of advanced (multi)processor, complex OS and fancy peripherals, is more sophisticated than ever. 2) Computers are getting more and more connected.

In this project we identified the needs in efficient management of networked, complex computer systems and proposed an approach to address them. We also implemented a basic set of tools to actually verify our approach. These tools were deployed and tested on Berkeley Millennium clusters [1].

1. Introduction

There are two aspects in system management: monitoring and control. System monitoring is the process of gathering system information, with adequate accuracy and reasonable latency, and representing them effectively. System control, on the other hand, is responsible for taking action to modify system parameters, such as rerouting a route, in the face of some event, such as a device failure, or in response to user command. The purpose of system control is to maintain system availability or improve performance. Obviously system control must base its decisions upon information provided by system monitoring. In the sections that follow we will discuss both system monitoring and control but we will focus primarily on monitoring due to the fact that usually special privilege is required to modify a system configuration and we do not have it on Millennium which we used as the test platform.

2. System Information

We identify tow categories of information that are of interest to system management – individual host information and network information. The following is a partial list of information that is pertinent to individual host:

· Number and speed of the CPUs

· Total physical and swap memory Installed

· System Clock

· Uptime

· Kernel Version

· Percentage of CPU user, nice, system and idle

· One, five and fifteen minute load averages

· Number of running processes and total number of processes

· Amount of free, shared, buffered, cached and swap memory

Network information is across hosts and devices that are connected via network. It includes network topology, device states, network statistics, route information, etc.

3. Design Approaches

Virtually all existing networked system management tools use a Manager/Agent paradigm. That is, distributed agents are deployed on managed devices to collect local information and report it back to some management unit. Even those that use standard protocols such as SNMP fall into this model too. Using standard protocol has the advantage of interoperatability among devices from different vendors. However, it may not be able to provide customized information that is of interest to satisfy specific management needs.

In this project, we use different approaches to collect the two types of information described above: A daemon was deployed on each host to collect system information while SNMP was used to discover network topology and states. Figure 1 shows the deployment scheme for our design.

[image: image1.jpg]Cccu

Central Control Unit

Figure 1 Deployment Scheme

3.1 System Information Collection via EchoMe Daemon

3.1.1 EchoMe Daemon

EchoMe is a daemon program that runs on each client machine to collect local system information (system state, system configuration, network statistics and etc.) and to execute the modifications issue by the server. The daemon is installed locally on the client machine and launches at startup. It establishes a secure connection (based on SSL, Secure Sockets Layer v3) to the server and communicates through exchanges of “IPacket” (Information Packets). “IPacket” is encoded in XML (Extensible Markup Language) syntax. To minimize network traffic, IPacket is incrementally updated, the new packet specify its differences from the previous one. Besides reporting information, EchoMe Daemon also listen to server’s incoming request to invoke system modification programs. The daemon program itself doesn’t have any privileges to execute such modification since it is running as “nobody”. Instead of building a challenge protocol to for checking privileges and etc. ourselves, we use the SSH protocol in handling this problem.

3.1.2 CCU -- Central Control Unit

Overview

All EchoMe daemons reports to CCU. CCU analyzes these information and selectively reports to the user. Based on CCU inputs, user can make suitable changes to fix errors or increase overall system performance and network flow. Instead of doing these tasks manually, user can program the CCU to take actions automatically when certain events happen. Basically, CCU automates the system administration tasks and provides a platform for complex software-level control over a collection of computation nodes.

CCU Components

Parsing Engine (“IO device / Input”)

It decomposes the incoming “IPacket” into various objects and insert these objects into tables in relational database accordingly. Since “IPacket” is in XML format, parsing engine is a modified standard XML parser written in C++. To increase the throughout of the CCU, multiple parsing engines are installed, each sub-net has its own p.e. running on the local machine.

Relational Database (“Memory”)

Information are categorized into tables. There are two major types tables, individual node info-table and collaborative analysis table. Individual node info-table stores the raw information collected from EchoMe daemon. Each client machine (node) has a set of tables that stored its system/network information overtime. Collaborative Analysis Tables maintain a snapshot of all node’s system status at current time. Even more, C.A.T. is extremely useful in generates a clear picture of network connectivity and network flow. Based on the routing table of each node, it merges all entries into a tree structure and display the connectivity between nodes.

Command Module (“Datapath”, “Output device”)

The module stores a limited set of commands that can modify individual client machine:

Route_Change_Cmd: modify the routing table of the node.

Arp_Cache_Change_Cmd: modify the arp cache entries of the node.

Process_Signal_Send_Cmd: sent out signals to process running on the node.

Process_Init_Cmd: startup a new process on the node.

Each command is translated into a special “IPacket” and send down to the EchoMe daemon running on the client machine.

Script Engine (“Control”)

CCU Script is a simple object oriented script language. It manipulates selected rows from the tables as objects and test their properties to make conditional decision on whether to invoke commands through command module or report changes through emails and etc.

Features:

1. Simple fixed type

2. Simple conditional check

3. Fixed action.

Script engine executes all installed scripts whenever the C.A.T gets updated. To get a better performance, we can use the built in triggering function of the database to invoke the script instead of massive scanning through row data.

Web Interface (“IO”)

It’s the frontend in reporting information to the end users. All tables in the Database can be browsed at user’s requests. Real time network connectivity graphs is available in java applet format. User can also input their own scripts or modify the installed scripts to automate the CCU.

3.2 Topology Discovery via SNMP

Some network information that resides on individual host can also be collected by the daemon running on that host. For example, the daemon can read the host’s ARP table and learn about its direct neighbors. Generating complete and accurate network information, however, cannot rely solely on this approach primarily due to the following two reasons:

(1) Individual hosts may not have the most up-to-date view of the network. Information cached on hosts usually includes only those that are used recently and tend to be incomplete. The ARP table, for example, may be empty if the host hasn’t generate network traffic for a while;

(2) Daemon cannot run on routers. Thus it is difficult, if not impossible, to derive connectivity among routers based upon information collected from individual hosts. Some critical information about routers, such as traffic statistics, won’t be available either.

Instead, we chose to use Simple Network Management Protocol (SNMP) for retrieving network information.

3.2.1 Background

This section was excerpted from [3]. It was put here for easy reference. Refer to [3] for details.

The Simple Network Management Protocol(SNMP)is an application-layer protocol that facilitates the exchange of management information between network devices. It is part of the Transmission Control Protocol/Internet Protocol (TCP/IP) protocol suite.

SNMP Basic Components

An SNMP managed network consists of three key components: managed devices, agents, and network-management systems (NMSs).

A managed device is a network node that contains an SNMP agent and resides on a managed network. Managed devices collect and store management information and make this information available to NMSs using SNMP. Managed devices, sometimes called network elements, can be routers and access servers, switches and bridges, hubs, computer hosts, or printers.

An agent is a network-management software module that resides in a managed device. An agent has local knowledge of management information and translates that information into a form compatible with SNMP.

An NMS executes applications that monitor and control managed devices. NMSs provide the bulk of the processing and memory resources required for network management. One or more NMSs must exist on any managed network.

SNMP Management Information Base (MIB)

A Management Information Base (MIB) is a hierarchically organized collection of information that is accessed using a network-management protocol such as SNMP. An agent implements and maintains its own MIB that is local to the networked device.

A NMS can retrieve device information from its MIB by talking to the agent that is running on that device. An agent can also initiate communication with NMS by way of trap mechanism (See [3] for further details). Figure 2 shows the a basic configuration of an SNMP managed network.

[image: image2.png]7 vanagomont N
(By

Managomont Management Managorment
Oatases | Datsbase Darsbase

Managed Devices

Figure 2: An SNMP managed network consists of managed devices, agents, and NMSs. Courtesy of Cisco Systems, Inc

3.2.2 Algorithm

The algorithm used to discover network topology is based on the information stored in a router’s routing table and ARP table. The routing table, identified as ipRouteTable in MIB-II ip group, contains information used for internet routing and can be used to derive network topology. The entries in this table are indexed by destination IP address. Each entry represents a route to the destination. The field ipRouteNextHop in each entry specifies the IP address of next router in this route. Thus the direct neighbors of this router can be learned by retrieving ipRouteNextHop fields from ipRouteTable. Starting with one router, which can be either learned by looking up the default gateway router of the host on which the discovery algorithm is running or specified as input argument, we can iterate every neighbor of the router, calling the same algorithm recursively on each iteration, thus discover complete router connectivity progressively. The recursion’s stop condition can be either a pre-specified maximum distance from the first router or domain criteria. The following is the detailed algorithm.

rootGateWay = the given router;

getIPRouteTable(rootGateWay);

……..

// Retrieve the IP route table of this router and add its direct neighbors

void getIPRouteTable(Router router) {

if(nHops > maxHops) return; // We have gone far enough.

Get SNMP ipRouteTable from this router;

Filter out all neighbors on each valid route;

Add all neighbors to this router’s neighbor list;

nHops++;

// Iterate neighbors:

Router theRouter = router.getDirectNeighbor();

while(theRouter != null){

getIPRouteTable(theRouter); // Recursion

theRouter = router.getNextDirectNeighbor();

}

nHops--;

}

The above algorithm only constructs topology among routers. To discover the connectivity of other hosts, a router’s ARP table is used. We can simply read the router’s ARP table at each iteration and add the hosts to its host list.

It should be noted that the network information that can be retrieved using SNMP is not restricted to network topology. The MIB implemented by a network device contains rich information and can be used to build highly sophisticated network management tools ([2] and [3]). In this project, however, we only tried network topology because we need to start with something that is feasible within the time frame of a class project and network topology represents the basic network state and serve as an excellent starting point. More work will be done to explore other possibilities.

The discovery code was written in Java using AdventNet’s SNMP packet.

4. Application Scenarios

We present here two possible application scenarios where our management tools can be used to facilitate system management and improve system availability and performance.

4.1 Web Server Availability

Problem

Node A hosting a web site X with ip Y. Unfortunately, Node A has hardware failure and stop functioning.

Classic Solution

System Administrator bring up the backup machine Node B, reconfigure it with same configuration as Node A.

CCU solution

After it automatically detect disappear of Node A, on a different sub-network, CCU choose an available machine Node B, add new configurations of Node A into Node B, reroute the router to find ip Y at Node B’s network.

4.2 Dynamic IP Hub

Problem

One global ip X, many nodes seamlessly serve as this ip X machine internally.

Classic Solution

Only a fixed set of nodes can be pre-set onto a virtual ip-hub.

CCU Solution

Base on system availability, the CCU can choose a set of “free” machine and linked them up through packet forwarding. A dynamic virtual hub is automatically configured.

5. Results

We have implemented a basic tool set as described above and tested on Berkeley Millennium cluster. The results we got are encouraging. We were able to collect both system and network in real time and discover network topology accurately.

Figure 3 is a snapshot of the connectivity among routers on Millennium discovered by our algorithm. It can be seen that there exists much redundancy in terms of routing

[image: image5.png]160.220.50.33

Figure 3. Router Connectivity on Millennium Discovered by Our Algorithm

configuration. To facilitate understanding and analyzing of network information, an interactive program was written. The above figure was a snapshot of the user interface of that program. User can select a node that is of interest by clicking on its icon. Selected node is highlighted in green and all its direct neighbors are highlighted in yellow. The links between them are drawn in blue.

Click here to download a demo of the program. It was written in Java and you need to have Java and AWT installed on your machine to run it. In this demo version, network information has already been preobtained (using our algorithm described above) and stored in a file. The program reads in the file and reconstructs network topology. In a real deployment scenario, the UI can run on the network and visualize information in real time. To run the demo, download the file and unzip it to a temporary directory and use the command java EchoVisual.

This is only a rudimentary user interface trying to verify our algorithm. We will explore more sophisticated visualization interacting methods in the future.

Currently EchoMe daemon is running on 80 millennium clusters and collecting information and reporting to CCU. The following diagrams are some tables of collected data.

.[image: image3.jpg]A phpMyAdn

Fle Edt View Favorites Tools

Help

rosoft Internet Explorer

v @ [0 ”||address [hip:sjevasoft.com/mm/

Home
1 Milennium.Be
S la A e
il
e
sl B
L Milennium o2
it ilennium o2

mm1a Millennium.Be

mm18 Millennium.Be

mm20 Millennium.Be

mm21 Millennium.Be

mm22 Millennium.Be

mm23 Millennium.Be

mme4Millennium.Be

mmes Millennium.Be

mm2s Millennium.Be

mme7 Millernium.Be

mm28 Millennium.Be

mm2s Millennium.Be

mm30 Millennium.Be

mm31 Millennium.Be

mm32 Millennium.Be

mm 34 Millennium.Be

mm3s Millennium.Be

mm3s Millennium.Be

mma37 Millennium Be _
T f
&

SYSTEM STATUS

sessionid nodeid

10

"

12

45

14

15

16

17

18

19

20

21

22

23

24

35

10

"

12

13

14

15

16

17

18

19

20

21

22

o

24

25

nodename

mm65 Millennium Berkeley EDU
mm73 Millennium Berkeley EDU
mm69 Millennium Berkeley EDU
mm61 Millennium Berkeley EDU
mm11 Millennium Berkeley EDU
mm50.Millennium Berkeley EDU
mm48 Millennium Berkeley EDU
mm72 Millennium Berkeley EDU
mm79 Millennium Berkeley EDU
mm80 Millennium Berkeley EDU
mm52 Millennium Berkeley EDU
mm77 Millennium Berkeley EDU
mm75 Millennium Berkeley EDU
mm66 Millennium Berkeley EDU
mm70.Millennium Berkeley EDU
mm44 Millennium Berkeley EDU
mm?7 1 Millennium Berkeley EDU
mm46 Millennium Berkeley EDU
mm63 Millennium Berkeley EDU
mm84 Millennium Berkeley EDU
mm12 Millennium Berkeley EDU
mm58 Millennium Berkeley EDU
mm64 Millennium Berkeley EDU
mm87 Millennium Berkeley EDU

mm53 Millennium Berkeley EDU

=151x|
-] es =
o=
sysname release version machine update_period last_statement_id last_update_time session_init_time %
Ui |2aq |2 IORART I | e 60 6497 2001502100420 20070502 Edit Delet g
i (240 |2 MBI | o 60 6484 2001002100419 20070502 Edit Delete
e [2a0 |2 SE OIS | 5o 60 6496 20010502100420 20070502 Edit Delete E
Ui (B0 |[S2SUENORAH | o 60 6498 2001002100420 20070502 EdtDeete |
Ui [2aq |EESE IR | e 60 6481 2001050210048 20070502 Edit Delete z
i (20 |2 UB0ALY | o 60 6482 2001050210418 20070502 Edit Delets i
e (220 |2 SEMBIAEID | 5o 60 6483 2001050210041 20070502 Edit Delete
L (B0 [SESHEMORAE | o 60 6525 2001050210041 20070502 Edit Delete
Ui |2aq |2 SE IR U | e 60 6487 2001502100419 20070502 EditDelete | | 22
i (240 |2 SNE MBI | o 60 6485 2001002100419 20070502 Edit Delets é
L (220 [EESMEMBIAEAD | 5o 60 6486 2001050210041 20070502 Edit Delete | [
Ui (B0 (2 2EMORAE | o 60 6523 2001050210041 20070502 EditDelets | &)
Ui |2a |EESNE MR U | e 60 6526 2001050210041 20070502 Edit Delete g
i (240 |EESHEMBIALY | o 60 6528 2001002100422 20070502 Edit Delets ’%
e [2a0 |2 2ME MRS | o 60 6527 2001050210042 20070502 EditDelets | |
L [Baq [SZSENORAE | o 60 6430 2001050210041 20070502 ol |2
Ui |2aq |22 MR U | e 60 6524 2001050210041 20070502 Edit Delete
i (20 |EEEHE VBN | o 60 6488 2001002100419 20070502 Edit Delets
e [2a0 [EESEMBOIAEAD | 5o 60 6493 20010502100420 20070502 Edit Delete
Ui (B0 |2 SHEMORAEH | o 60 6494 2001002100420 20070502 Edit Delete _|
Ui [2aq |EESME IR | e 60 6489 2001502100419 20070502 Edit Delete
i (240 |22 MO0 | o 60 6502 2001002100420 20070502 Edit Delets
e (220 [EESEMBIAEID | 5o 60 6491 2001050210041 20070502 Edit Delete
L (B0 |[SESUE MORARH | o 60 6492 2001502100419 20070502 Edit Delete
I PR A Rl e 60 6505 2001002100420 2007002 Edit Delete
e =TT /V‘. Internet

[image: image4.jpg]A phpMyAdmin - Microsoft Internet Explorer

Fle Edt View Favorites

Tools

Help -~

@ @ || address [& hp: fevasoft.com/mm/

mm47 Millennium.Be

mm4a Millennium.Be

mm49 Millennium.Be

mmS0 Millennium.Be
mmS1 Millernium.Be

mms2 Millennium.Be

mmSa Millennium.Be

mmS4 Millennium.Be

mmSS Millennium.Be

mmS7 Millennium.Be

mmse Millennium.Be

mmS9 Millernium.Be
mmé1 Millennium.Be

mmea Millennium.Be

mmé4Millennium.Be

mmes Millennium.Be

mmes Millennium.Be

mme7 Millennium.Be

o e—
o
A
e
el B

mm73 Millennium.Be

mm75 Millennium.Be

id devname destip gateway flags refcnt touse metric

id devname rxbytes rxpackets rxerrs rxdrop
59192333 374857 0 0000000000

NETWORK STATUS PACKETS

id

SR SETNN

1

1
|
1
1
2
2
2
2
2
:
<!
5
3
3
4
4
4
4
4

inserttime nodeid type
2001-05-02 08:43:15 1 dev,arp.route
2001-05-02 08:43:15 2 dev.arp.route
2001-05-02 08:43:15 3 dev.arp.route
2001-05-02 08:43:16 4 dev,arp,rote
2001-05-02 08:43:16 5 dev.arp.route

etho
etho
myrio
o
etho
etho
eth
myrio
lo
etho
eth
etho
myrio
lo
eth
etho
eth0
myrio
lo
etho

lo
eth0
lo
eth0
lo
eth0
lo
eth0

0030E5A9 6730E5A9 0003
0030E5A9 00000000 0001
00040404 00000000 0001
0000007F 00000000 0001
00000000 0130E5A9 0003
0030E5A9 6F30E5A9 0003
0030E5A9 00000000 0001
00040404 00000000 0001
0000007F 00000000 0001
00000000 0130E5A9 0003
0030E5A9 6B30ESA9 0003
0030E5A9 00000000 0001
00040404 00000000 0001
0000007F 00000000 0001
00000000 0130E5A9 0003
0030E5A9 6330E5A9 0003
0030E5A9 00000000 0001
00040404 00000000 0001
0000007F 00000000 0001
00000000 0130E5A9 0003

2179549827 9740971 0 0000000000
68079868 431058 0 0000000000
2616332007 9894879 0 0000000000
60623004 384039 0 0000000000
3165634963 9928476 0 0000000000
66379813 422927 0 0000000000
3706129501 39098981 0 0000000000

0

cococoocoooocoocoooo0o0o0o 000

0

cococoocoooocoocoooo0o0o0o 000

mask

0 OOFFFFFF 40

coocoocoooocoocoooo0o0o0o 000

rxfifo
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000

O0FFFFFF 40
00FFFFFF 40
000000FF | 40
00000000 40
O0FFFFFF 40
00FFFFFF 40
O0FFFFFF 40
000000FF 40
00000000 40
00FFFFFF 40
00FFFFFF 40
00FFFFFF 40
000000FF 40
00000000 40
O0FFFFFF 40
00FFFFFF 40
O0FFFFFF 40
000000FF 40
00000000 40

rxframe
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000

mtu windows irtt

0

cococoocoooocoocoocoococooo0o0o0000
coococoooocooocoo0o0o0 o000

rxcompressed rxmultic

0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000

0
16042
0
16005
0
16022
0
16061

txbytes
59192333
1792092793
68079868
293963331
60623004
776370035
66379813
2429189603

txpackets txerrs

374857
6440844
431058
5797860
384039
5833263
4220927
16091703

0

coocoooo

txdrop
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000

txfif
000000
000000
000000
000000
000000
000000
000000
000000

Figure 4. Sample Tables of Host Information Collected on Millennium

6. Conclusion

Our distributed agents and centralized control unit approach prove to be a feasible system management model. It produces accurate system and network information. Network topology discovery via SNMP is efficient and accurate on networks that have SNMP enabled.

CCU automates the system administration tasks and provides a platform for complex software-level control over a collection of computation nodes.

7. Future Work

Our work in this project can be extended in a number of ways. Including:

Polishing the web based user interface: Our current user face is primarily a database browser and does not provide too much visualization. It is not very easy for someone to navigate through 80 hosts to find what he/she really wants. The network topology visualization is also primitive and certainly a lot can be done to improve.

Information analysis and decision making: There are a whole lot of possibilities that can be explored in this area. Many approaches and methods can be borrowed from other research communities, such as AI, to make our command module more intelligent.

Evaluation and full deployment on Millennium: We only conducted preliminary tests and verification so far. Although the results are encouraging, we don’t have too much quantitative analysis yet. Also the tools we developed are not being used. We are hoping that we can keep working on it and make it a real feasible tool that can be used on Millennium.

8. Acknowledgments

We would like to express our thanks to the follow people who kindly gave us valuable help and advice:

Professor David A. Patterson, Yujia Jin, Eric Anderson and Eric Fraser

9. Links

Here is the link to the web based user interface: http://evasoft.com/millennium/
To download a demo of network topology program, click here.

10. References

[1]. Berkeley Millennium Cluster, http://www.millennium.berkeley.edu/
[2]. W. Stallings, SNMP, SNMPv2 and RMON, Practical Network Management, Second Edition. Addison-Wesley, 1996

[3]. Simple Network Management Protocol (SNMP), http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/snmp.htm
[4]. Douglas R. Shier, Network Reliability and Algebraic Structures, Clarendon Press, Oxford, 1991

[5]. Ouri Wolfson et al., Managing Communication Networks by Monitoring Databases, IEEE Transactions on Software Engineering, Vol. 17, No. 9, September 1991, pp. 955-953

[6]. Craig Partridge and Keith McCloghrie, Network Management in the TCP/IP Protocol Suite, handbook pf Computer Communication Standards, Vol. 3, Second Edition, 1990, pp. 198-222

[7]. Sameh Rabie and Xi-Nam Dam, An Integrated Approach for LAN/WAN Management, Proceedings of the IEEE Network Operations and management Symposium, 1992, pp. 254-265

[8]. Shri K. Goyal, Knowledge Technologies for Evolving Networks, Proceedings Second international Symposium on Integrated Network Management, 1991, pp. 439-461

[9]. AdventNet, http://www.adventnet.com/

[10]. The NET-SNMP Project, http://net-snmp.sourceforge.net/
[11]. http://www.w3.org/XML/ Extensible Markup Language

[12]. http://home.netscape.com/eng/ssl3/ssl-toc.html SSL v3.0

[13]. http://www.openssh.org/ SSH protocol suite of network connectivity tools

Direct Link

Neighbor Host

Selected Host

� EMBED PBrush ���

� EMBED PBrush ���

Router Connectivity on Millennium

� EMBED PBrush ���

[image: image6.png]160.220.51.202

[image: image7.png]E choVisual(TM) Demo - Network Connect

[image: image8.png]E choVisual(TM) Demo - Network Connect

[image: image9.png]160.220.51.202

[image: image10.png]160.220.50.33

_1050661061

_1050661062

_1050661060

