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Abstract

The Universal Planar Manipulator

by

Dan S. Reznik

Doctor of Philosophy in Computer Science

University of California at Berkeley

Prof. John F. Canny, Chair

This dissertation is about a novel technology for planar part manipulation. A device has been de-

veloped, called the Universal Planar Manipulator (UPM), based on a single actuator: a rigid, hor-

izontal plate which vibrates in its own plane (3 degrees of freedom). Generic parts (bottles, tools,

etc.) placed on the UPM’s plate move as a result of friction. Our main contribution has been

to develop control algorithms for the UPM which allow it to manipulate several parts in parallel.

The UPM’s actuation simplicity combined with its open workspace (no grippers) renders it appeal-

ing to existing industrial applications and novel interactive devices such as toys and active desks.

Prof. John F. Canny
Dissertation Committee Chair
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Chapter 1

Introduction

In this dissertation we describe a novel device called the Universal Planar Manipulator

(UPM), whose function is to manipulate parts in the plane. Part manipulation is the controlled dis-

placement – translation, rotation – of generic objects (tools, bottles, coins, etc.) in a bounded planar

workspace. The simplest type of manipulation isparts feeding: one or more objects must displace

as a group somewhere, e.g., in transferring luggage from plane to passengers in an airport, moving

pharmaceutical products on a production line, etc. The simplest parts feeder is the conveyor belt

which uses static friction of objects with a continuously rolling belt to produce forward motion. Part

feeding is important in applications where inspection of objects is necessary, e.g., rejecting defective

products. Another important feature commonly associated with parts feeding is part presentation: a

part needs to be transferred from point A to point B and be presented at point B at a known pose,

so as to prepare it to the next manufacturing stage. This is akin to a relay runner who must hand his

baton to the next runner at an expected orientation. This leads to the notion of manipulation.

Manipulation is as a selective type of parts feeding: specific objects need to execute spe-
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cific motions, e.g., a defective object must be moved out of a group currently being conveyed, or

oriented to a desired pose. A typical solution for manipulation is an anthropomorphic, ”pick-and-

place” one: a robotic end effector (e.g., a gripper) picks up an object at a starting location, transports

it to a destination, and places it there. Disadvantages of this method include the fact that robotic

arms are expensive, hard to design, and hard to control. If several objects need to be manipulated

simultaneously – an operation calledparallel manipulation – motion control must take into account

potential collisions between the various arm/end-effector devices.

The shortcomings of pick-and-place manipulation have motivated research on non-prehensile

(gripperless) manipulation devices, grouped in a field called Distributed Manipulation [7]. Devices

have been proposed based on 100s to 1000s of actuators tiled over a supporting surface. Each actu-

ator produces a local force of some kind, e.g., magnetic, mechanic, aerodynamic, etc. An actuator

array can thus display an arbitrary planar force field, and thus achieve arbitrary parallel manipula-

tion of parts sitting on its surface. This design eliminates robotic arm clutter simplifying control

and inspection tasks (parts are directly visible). However, it has the disadvantage of a large number

of moving parts, anyone of which is a candidate for failure.

In this thesis, we have looked at a complementary question: can a device be designed

which retains the active-surface design of an actuator array and which contains dramatically less

moving actuators? We have developed a device, called the Universal Planar Manipulator (UPM),

for general planar manipulation in the plane which is based on a single moving actuator: a rigid,

horizontal plate with only three degrees of freedom. Our main contribution has been to show that

such a minimalist device is sufficient to manipulate several parts sitting on its surface in parallel.

We describe motion control algorithms for the UPM’s horizontal plate which achieve this goal.
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Due to its simplicity (and reduced costs) the UPM could penetrate existing industrial manipulation

applications and inspire novel devices such as toys and interactive desks.

1.1 Related Work

1.1.1 Dynamic Simulation as a Design Tool

Our thesis research started with the analysis of parts-feeding performance for an existing

actuator-array design. A dynamic simulation tool called Impulse [29] was used to study the de-

pendence of feeding throughput on actuator geometry. The device in question, called the M-Chip,

was developed by B¨ohringer et al. [9, 8]. It contains approximately 10,000 micro-fabricated ac-

tuators, called resonators, tiled over a few square-cm of silicon substrate. Resonators vibrate in

see-saw fashion at several kHz; local forces are imparted on resting objects through repeated im-

pacts coming from the oscillating resonators. No attempt had yet been made to simulate part-array

interactions quantitatively at the detailed mechanical level, owing mainly to the lack of efficient,

accurate dynamic simulation tools. The Impulse tool [29] overcomes these problems by providing

an accurate model for collision detection and resolution, which is particularly well suited for the

types of rigid vertex-face interactions likely to occur between the part and the resonators.

Previous work done using Impulse to collect statistical data to characterize a complex

mechanical process was done in the context of estimating pose statistics for polyhedral parts dropped

from random orientations on a flat surface [30]. From a design optimization standpoint, the work

closest to ours is that of Berkowitz and Canny [4, 5] who used Impulse to optimize the design

of a passive parts-orienting device. From a modeling standpoint, Boothroyd [11] has worked on

abstracting the performance of vibratory bowl feeders with respect to part mass, part geometry,
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friction, and oscillating frequency of the device. A related and emerging line of work involves

simulation-based optimization of part shapes targeted for thermodynamic self- assembly [13, 22].

The end-result of this exploration was (i) we determined geometric parameters which

optimized parts feeding and (ii) we found a bug on the original design which was solved by a new

resonator control motion scheme.

1.1.2 Vibrations-Based Parts Feeding

The M-Chip is based on nearly vertical impacts of resonators against supported parts.

However the feeding motion is typically horizontal. That suggests a more appropriate design where

actuator motion is mostly horizontal. This presupposes a sliding frictional interaction between hor-

izontally vibrating actuator and parts. The nature of sliding friction is such that forward feeding

forces result if an asymmetry in the feeder’s horizontal motion is imposed. Zesch et al. have de-

veloped a micro-positioning device which steps over a stationary flat plate by contracting/extending

its body [45]. Similar to inch-worm motion, this device exploits both stiction and sliding frictional

modes. Reznik and Canny [36] have shown that asymmetry in the compression-decompression

phases of part-actuator impact is the primary cause for forward part feeding for the M-Chip. Reznik

and Canny have consider the problem of a motion waveform with fewest sinusoidal components

[39]. Experimental results utilizing this type of motion have been reported in [34]. Other examples

of array-based feeders which exploit asymmetry include [20, 43].

1.1.3 Vibrations-Based Planar Manipulation

The big challenge then becomes to upgrade a simple vibrations-based feeding motion to

a full (and possibly parallel) type of planar manipulation. The bowl feeder [11] is the canonical
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example of a vibrations-based manipulation device. Though stark in its simplicity, it is not a pro-

grammable device: its function is tied to part shape and its own internal track design. The APOS

feeder [11] uses vibrations of a grooved surface to orient objects as they fall into the grooves. Hay-

ward et al. [18] have performed experiments with a horizontally/vertically vibrating plate in the

context of automatic part orientation – they look for plate control waveforms which create interest-

ing part energy minima. B¨ohringer et al. [6] document experiments with a transversely-vibrating

plate in an attempt to automatically gather particles at vibration nodes. In [44], closed horizontal

motions of a flat plate are used to “ratchet” a part of known shape to a desired final orientation. Frei

and Wiesendanger [15] have designed a distributed manipulation device based on an array of 1-dof

plates (actuated vertically). The array moves as a whole along a planar circle; by careful phase

control they can achieve pixel-wise force control with just one dof per actuator. Using these designs

as inspiration, we took on the challenge to develop a novel device, which with a single moving actu-

ator retains full parallel, arbitrary planar manipulation dexterity. This is explained in the following

chapters.

1.2 Thesis Organization

This thesis is organized as follows: in Chapter 2 we present our work on Dynamic

Simulation as a tool for designing parts feeders. In Chapter 3 we present a novel design for a

one-dimensional parts feeder based on a horizontal plate. In Chapter 4 we extend the vibrations-

based feeder design to a device called the Universal Planar Manipulator (UPM) capable of handling

generic parallel planar manipulation. In Chapter 5 we discuss implementation challenges and so-

lutions for the UPM. In Chapter 6 we describe a motion primitive, called the “jet”, which renders
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manipulation with the UPM robust and practical. Conclusions and future work are presented in

Chapter 7.
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Chapter 2

Dynamic Simulation as a Design Tool for

a Microactuator Array

A recent trend in robotics has been the design and fabrication of micro-electromechanical

(MEMs) active surfaces intended for part manipulation at the sub-mm scale. B¨ohringer et al. [8]

have fabricated one such device called theM-Chip (“M” stands for manipulation), shown in Fig-

ure 2.1(a). This device consists of an array of approximately 10,000 micro-actuators, calledres-

onators, tiled over a few square-cm of silicon substrate. Resonators are rectangular slabs of silicon

supported a few�m above the substrate by torsionalrods. Electrostatic actuation cause resonators

to oscillate about the rods at a few kHz. One end of the resonator is equipped with aridge of several

vertical poles. The asymmetric design generates anisotropic impact forces when a smallpart is

placed over the array, inducing a motion bias towards a specific direction [8].

In one version1 of the device, called theunidirectional array, resonators are all oriented
1Another version of the device, called thesqueeze array, consists of two opposing unidirectional arrays connected to

each other along a center line. This device has been proposed for sensorless part orientation [9].
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(a) (b)

Figure 2.1: (a) A photo of B¨ohringer’s hand holding his M-Chip, containing approximately 10,000
resonators. (b) Electron micrograph of a portion of the array showing the interleaved tiling of
resonators.

towards a single direction and tiled in interleaved fashion, as shown by the electron micrograph in

Figure 2.1(b). This configuration acts as a microscale parts feeder for light objects dropped on its

surface – these are transferred from one end of the array to the other at a constant speed� called the

feed rate.

One of the main difficulties in testing and re-engineering the M-Chip is obtaining mean-

ingful experimental data given the small dimensions and the sheer number of on-chip moving ac-

tuators. The fact that the dynamic state of the device and/or part is practically inaccessible makes

it difficult for one to identify design changes which could lead to better performance. This type of

problem is analogous to that faced by a semiconductors designer who needs detailed measurements

on the operation of a new type of device with the intent of improving its performance. Such mea-

surements will be often too time consuming and/or noisy, so an alternative is simulation tools such

as FEM or SPICE. Here we propose a similar solution. Our contribution is to utilize a powerful dy-

namic simulation tool calledImpulse [29] to extract detailed, noise-free dynamic information from

the array over a variety of experiments. In designing dynamic simulations for the M-Chip, we have
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as principal goals:

1. Design verification and debugging: does the device correctly feed parts placed on its sur-

face and at which rate? If not, can problems be identified and solutions proposed which are

successful at least in simulation?

2. Performance optimization: for a working prototype, are there changes in the design which

could lead to better performance?

3. Device modeling and critique: can the chaotic part-array interactions be reduced to a simpli-

fied model which captures the bulk behavior of the device’s dynamics?

In doing (1) we discovered a bug in the existing design which causes the part to jam

against a row of resonators, leading to an interruption on the feeding process. The designers con-

firmed this problem from experimental tests, reinforcing the reliability of our simulated models.

We proposed and tested a solution, calledrow-strobing, which eliminates jamming for all simulated

experiments. Still in this category, we identified a phenomenon calleddouble bouncing: low speed

secondary resonator-part collisions occurring shortly after a higher speed collision cause frictional

losses, reducing the feed rate. This effect was eliminated with a reduction of the resonator’s duty

cycle, resulting in a 30% gain in feed rate.

For (2), we leveraged on the simulator’s flexibility to perform a “blind search” over a

two-parameter family of resonator shapes and part masses; the combination leading to the best feed

rate was subsequently found.

To address (3), we collected statistical information on the part’s dynamic parameters. We

found that the part’s main motion modes are (i) forward feeding and (ii) vertical bouncing. In
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particular, (ii) is corresponds the motion of a mass supported by a vertical spring, with measurable

spring constant. We found that most of the energy of the system is “wasted” on this non-feeding

hopping mode. By applying external forces during the feeding process, we also found that the

friction experienced by the part is ofviscous type. Our own parallel work on the dynamics of

vibratory part feeders [40] has provided some answers as to why this is so.

The remainder of this Chapter is organized as follows: in Section 2.1 the simulation setup

is explained. In Section 2.2 we describe how both the jamming and double bounce problems were

eliminated, and also performance studies which identify an optimal resonator shape. In Section 2.3

we develop an abstract model for the device and study the energetics of part motion. Section 2.4

concludes with a summary and directions for future work.

2.1 Simulation Setup

In modeling the M-Chip with Impulse, the focus was to preserve original nominal param-

eters and dimensions as closely as possible. We used the original resonator mass, geometry, and

oscillation frequency as given to us by the designers. We started out by creating a 280x180x5�m

geometric model for the resonator, shown in Figure 2.2(a). To simplify collision detection, we mod-

eled the set of poles installed on one extreme of the resonator collectively as a single5 �-high ridge.

The resonator body2 was modeled as a rectangular slab. In the actual device, resonator motion is

induced by applying a voltage between the resonator and an electrode underneath it, as shown in

Figure 2.2(a). Electrostatic actuation was replaced by (i) modeling the supporting rods as a single

spring-loaded revolute joint, and by (ii) a torque control-law acting at that joint. The joint’s spring
2Fabricated resonators posses a grating of holes, but these have no effect on collisions with the part.
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and damping constants were chosen according to the torsional elasticity of silicon. The torque

wave applied to the joint is a 5 kHz positive square wave, whose amplitude was chosen3 to pro-

duce positive oscillations of approximately5o (0.08 rad). Figure 2.2(b) shows the driving torque

law superimposed on�, the free oscillation angle, which is roughly a 5 kHz positive sinewave (the

resonator acts as a mechanical low pass filter which attenuates the higher frequency harmonics of

the driving square-wave).
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Figure 2.2: (a) The resonator is modeled as a rectangular slab with a ridge at one end. The sup-
porting rods are modeled as a spring-loaded, damped revolute joint. The electrostatic actuation
(provided by the electrode) is replaced by a torque control law at the joint. (b) The torque applied
to the resonator is a 5 kHz positive square wave. The torque (not shown in scale) is superimposed
with �(t), the resonator angle. The resulting oscillation is a positive 5 kHz sinewave.

The next modeling step was to assemble the resonators in interleaved fashion, as in Fig-

ure 2.1(b). Though the actual device contains over 10,000 resonators, simulating this many moving

parts is impractical with Impulse. However, by considering an 8x5 sub-array of resonators, and a

rectangular array-aligned part with silicon’s density, we are can remain physically consistent with

the full size experiment. The final Impulse model shown as a 3D rendering is depicted in Figure 2.3.

Notice that the part’s footprint covers approximately 10 resonators, while in actuality it would cover
31 kHz and2o are the values nominally used by the designers – w.l.o.g., we chose 5 kHz and5o for better numerical

stability with Impulse.
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100s.

Figure 2.3: 3D rendering of the complete model showing a 1.15x0.4x0.25�m, 550�g part resting
at its initial position over an 8x5 resonator array.

The Impulse simulator resolves collisions between rigid bodies based on a sophisticated

discrete-event impulse model. Two global parameters need to be set: the friction coefficient�,

and the restitution coefficient�. These were set to the physically reasonable (and numerically-

stable) values of 1.0 and 0.5, respectively. Experiments to evaluate how these parameters affect

array performance have not yet been tried, though some theoretical results have been derived for

vibratory feeders [11].

2.2 Design Optimization

The first simulated experiment performed with the array was to drive the resonators and

simply drop the part on it. Figure 2.3 shows the part at its starting position for this experiment.



13

2.2.1 Part jamming

Once dropped on the array, the part is propelled forward at a constant speed of about

0.8 mm/sec, a value in close match with experimental results performed by the designers. A prob-

lem quickly discovered was that the part would jam (i.e., stop its forward motion) as soon as it

encountered a new row of resonators, as shown in Figure 2.4(a). Jamming occurs since the part’s

vertical hopping is not high enough to allow it to skip over the ridges of the next row of resonators.

As the part is driven up, the next row of resonators is also doing so, and the part bounces back.

sweep

2 4
1

2
1 5

3

3
2 4

4
5

part

(a) (b)

Figure 2.4: The jamming problem: in (a) the part is shown unable to skip over the ridges of the
encountered row of resonators. In (b) the row-strobing method is illustrated. Consecutive rows in
the array are labeled from 1-8 in the direction of the part’s motion (only the first 5 rows are shown).
The process involves selectively turning off consecutive rows of resonators for a few oscillation
cycles, in the direction opposite to the part’s motion.

The first attempted solution to eliminate jamming was to drive consecutive resonator rows

at different phase offsets, so that ridges in the blocking row would be going down while other

resonators would be driving the part up. This idea did not work since the out-of-phase impacts

occurring under the part cause lower part hops which in turn aggravate the problem of skipping

a set of blocking ridges. A solution which proved successful is calledrow-strobing, illustrated in
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Figure 2.4(b). The idea is to propagate a wave of off resonators in the direction opposite to the

part’s motion. Label all rows from 1 to N along the array’s feeding direction. The first row to be

turned off is row N. That row is left in the off state during
 complete oscillation cycles, at which

point it is turned back on. The process continues with rowN � 1 being off for
 cycles, and so on

until row 1 is reached. At this point, the wave wraps around and the process restarts at row N. Since

part position is not known, any resonator row is potentially causing jamming, thus the need for a

sweeping wave (this could be alleviated with sensing). To ensure that the jamming row is located

faster, the wave is propagated against the feeding direction so the relative speed between the wave

and the part is higher. Choosing too small a
 may not give the part enough time to be pushed

over the blocking ridges, however the average jam clearing time is proportional to
. We found

that
 = 50 oscillation cycles gave the best results. In the case of a very long array (as in the real

device) the blocking row can be found faster by propagating several off wavefronts separated by a

constant number� of resonator rows. If� is too small, too many off rows will lie under the part at

any given time, reducing the feed rate considerably. In our case we set� = 4 rows, i.e., in our 8x5

array there will be, at any given time, two off rows moving in the�x direction. Since the part is

about 4 resonators long, the part receives1=4 less impacts at any given time.

As shown in Figure 2.5, the row-strobing method results in a motion of the part character-

ized by periods of constant forward feed rate (of approximately 0.8 mm/sec) interleaved with short

jamming phases, where the feed rate is null.

2.2.2 Double bouncing

The simulator treats collisions as discrete events; each collision is followed by a calcula-

tion which computes an impulse force applied at the collision point and in opposite direction to the
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Figure 2.5: Plot of the part’s forward displacement as a function of time. As shown, the part’s
motion alternates between constant forward motion and short periods of jamming.

bodies colliding. We looked at the stream of collisions between the part and the resonator located on

the 2nd row and 3rd column of the array during the first non-jamming period of Figure 2.5, namely,

for 0:05 < t < 0:2 sec. For every such collision we recorded the associated (i) resonator angle�,

(ii) angular speed_�, and (iii)Fx, thex component (i.e., along the feeding direction) of the impulse

force calculated by the simulator. Figure 2.6 shows a scatter plot of the(�; _�) pairs gathered. These

pairs cluster into two separate clouds pointed to by the arrow labeledloaded. As expected, one of

the clouds (signaled by thefree arrow) follows quite closely the� vs. _� relation for the resonator’s

free oscillation – this is an ellipse since the free oscillation is roughly sinusoidal. However, the

second cluster of points is anomalous.

What phenomenon could be generating the lower cloud of points? That cluster indicates

that many collisions are occurring at an angle� with a much slower_� than that of free oscillations.

We found that these collisions were being caused by secondary bounces of the resonator on the part
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Figure 2.6: Scatter plot correlating resonator angle� (x-axis) w/ the angular speed_� (y axis). The
free arrow shows this relationship for free oscillation – roughly an ellipsoid. Theloaded arrow
points to(�; _�) pairs generated by individual collisions when the part is over a chosen resonator.
Some of the loaded points follow the free oscillation curve, while others lie in an anomalous region
of low values of_�.

occurring shortly after a normal 5 kHz bounce. To show that, we correlated�, _�, andFx with the

collision’s inter-arrival time, which measures the time elapsed between the current collision and

the one last occurring in the simulation. This is shown in Figure 2.7(a,b,c). Though one expects

collisions with a single resonator to be spaced by1=5 kHz = 0:2 ms (i.e., the part receives one

impact per resonator cycle), the graphs show that collisions cluster over:02, :18, and:2 ms interar-

rivals. The collisions occurring at:02 ms after the normal:2 ms ones aredouble bounces; after the

first collision, the ridge is still being driven upward by the torque control law, causing the resonator

to ricochet one or more times against the part. After the double bounce, the resonator will tend

to re-synchronize with the driving square wave, so that the next collision occurs within:18 sec:

0:18 + 0:02 = 0:2 ms. The (a) plot shows that the:02 collisions occur at lower values of� than the
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normal :2 ms ones. This indicates that a downward motion of the part favors the double bounces.

The (b) plot shows that double bounces occur at much slower_� than normal bounces, implying that

the former transmit less impact energy to the part than the latter. The (c) plot shows that most double

bounces are associated with an impulse pointing in the negative feeding direction, i.e., they act as

brakes!

Double bounces were eliminated by reducing theduty cycle of the square wave torque

driving the resonators from 50% to 36%. This shuts off the driving torque law just before a double

bounce is likely to occur (i.e.,:02 ms after the average time normal collisions occur). The results of

this change are shown in Figure 2.7(d,e,f), which side by side with the previous plots illustrate how

the cloud of:02 and:18 ms collisions coalesce into a single cluster over0:2 ms inter-arrivals. These

graphs also show that the new impulses occur in average at a higher value of_�, i.e., they transfer

more momentum at every collision. This simple reduction in duty cycle increases the feed rate from

0:8 to 1:0 mm/sec, i.e., a 30% improvement. As an interesting note, the points in Figure 2.7(f) are

split evenly in the positive and negativeFx range, indicating that the total force applied to the part

over the period considered is zero – the part is feeding forward at a constant speed.

2.2.3 Optimizing the resonator’s shape

The feed rate� was measured against three parameters: (i) the part’s massM , (ii) the

ridge’s distanceL from the resonator’s midpoint, and (iii) the ridge heightH. The last two parame-

ters are illustrated in Figure 2.8.

The plots in Figure 2.9 show the results of these experiments. Plots (a,b,c) show, re-

spectively, results from the mass, ridge distance, and ridge height experiments. Thex-axis labels

the parameter being varied; the feed rate is plotted alongy. The collision angle�, angular veloc-
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ity _�, and the height of the part’s center of mass PartZ (averaged over an entire feeding task) are

superimposed over the feed rate; their numeric values have been omitted for the sake of clarity.

Figure 2.9(a)’s optimal� atM = 55 �g is reached since (i)� is monotonically decreasing

(as it gets heavier, the part “sinks” into the array, tracking PartZ) and (ii)_� tends to level off (both

these effects contribute to less momentum transferred on the+x direction).

For Figure 2.9(b),� increases withL by a simple lever-like effect (ridge gets closer to

revolute joint). This effect explains a monotonically decreasing PartZ, since as the ridge gets closer

to the center, it transfers less momentum at every impact. These two opposing trends cause the_�

curve to go through a maximum at approximatelyL = �125 �m, which in turn causes� to reach

its highest value shortly after_�’s maximum.

The first obvious fact in Figure 2.9(c) is that PartZ moves linearly up with an increase in

the ridge height. For the lower region ofH values,� remains constant while_� increases monoton-

ically, and so does�. At H = 16 �m both� and _� decrease sharply, also decreasing�. At present

we haven’t been able to justify what are the geometric/dynamic reasons for this effect.

2.3 Device Modeling

2.3.1 Array ballistics

The plot in Figure 2.9(a) shows a linear relationship betweenM and the PartZ, i.e., the

array acts as a linear spring over which the part bounces. This linear relationship yields a spring

constantk = 294 kdyn/cm. ForM = 55 �g, this mass-spring system resonates at 370 Hz. We

computed the Discrete Fourier Transform (DFT) of PartZ for0:05 < t < 0:2 sec, and found two

major frequency components: one at 360 and one at 5 kHz, corresponding, respectively, to the
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spring-like oscillations, and the normal resonator impacts. The DFT also revealed that the360 Hz

component was 5 times larger than the5 kHz one, suggesting that too much energy is being spent

in the upward vibrational mode (more on this below).

2.3.2 Friction modeling

To understand the type of friction experienced by the part as it “slides” on the array, we

performed the following experiment. A 55�g part is dropped on the array as in Figure 2.3. Enough

time is waited so that the part achieves its equilibrium feed rate of 1.1 mm/sec. At that point

(t = 0:05 sec), an external forceFext in the�x direction is applied to the part’s center of mass. The

experiment consists in observing the resulting feed rate�0 for different values ofFext. Figure 2.10

shows the part’sx position vs. time, before and afterFext is applied – this graph reveals a linear

relationship between the new feed rate andFext, i.e., the array acts as aviscous medium, akin to a

fluid! This effect motivated us to look at this problem in depth, but for lack of space we direct the

reader to another publication [40]. In a nutshell, it is caused by the velocity-independent Coulomb

frictional force combined with the temporally asymmetric stream of part-resonator impacts.

The viscous model prescribes a frictional force proportional to (i) the part’s weight, and

(ii) the difference between part velocity and normal feed rate, i.e.,Ffric = �Mg(� 0 � �), where

� is the coefficient of static friction. This relation was used to compute values for� for various

externally applied forces, noting that at equilibriumFfric = Fext. The results are tabulated in

Table 2.1. As shown, the model assumption explain the data quite well, with� nearly independent

of Fext and approximately equal to Impulse’s global coefficient of friction.
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Fext � 0 �
(dyn) (mm/sec)

0 1.1 N/A
.025 .6 1.16
.05 .06 .99
.06 0 0.93
.075 -.36 1.02
.1 -.88 .99

DOF Eavg Stdev
(10�5 dyn cm)

LinX 1.78 .71
LinY .1 .15
LinZ 1.38 1.86
AngX .65 .86
AngY .63 1.28
AngZ .0081 .045
PotZ 50.1 14.3

Table 2.1: Left: Friction coefficient (�) computed using a viscous friction model, for various exter-
nally applied forces. Right: Energies and standard deviations present in each of the part’s indepen-
dent DOF’s, over0:05 < t < 0:2 sec.

2.3.3 Energetics of part motion

We measured the average energy present in each of the part’s degrees of freedom: three

translational kinetic energies along X, Y, and Z, denoted LinX, LinY, and LinZ; three angular kinetic

energies about the X, Y, and Z axes, denoted AngX, AngY, and AngZ; the part’s potential energy

PotZ (with g = 981 cm/sec2) with respect to its resting height. The values for these energies

averaged over an0:05 < t < 0:2 sec (and the corresponding standard deviations) are shown in

Table 2.1.

The above data shows that this type of array consumes a disproportionate amount of en-

ergy to keep the part at an average potential energy, rather than for forward motion. This suggests

that an array with longitudinal rather than vertical actuators would be more energy efficient (e.g., see

[43] for a novel type of design based on thermally-actuated cilia). Notice also that a small portion

of the energy isequipartitioned between AngX and AngY, implying that part motion along these

DOF’s is pretty much chaotic. The low value of AngZ shows that the array (as expected) is unable

to accelerate the part about the Z axis.
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2.3.4 An abstract model

From the above studies, the following simplified model of part/array dynamics can be

derived: the array acts as a springy conveyor belt over which the part hops. The average part height

(how much it sinks into the array), denotedd, is a function of the part’s massM and the supporting

spring’s stiffnessk. Friction with the conveyor belt is viscous with coefficient�. The belt feeds at

a rate�, also a function ofd. This model is depicted in Figure 2.11.

2.4 Summary

In this chapter we show how dynamic simulation can be used as an effective tool in the

characterization an further design optimization of an existing MEMs device called the M-Chip. We

are planning to incorporate into the M-Chip’s design the various improvements suggested by this

work, and find out whether the gains in performance are indeed possible.
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Figure 2.7: Graphs (a,b,c) show�, _�, andFx (plotted along y) clustering over three specific collision
inter-arrivals (plotted along x): .02,.18, and .2 ms. Graphs (d,e,f) show the re-clustering of the same
quantities, this time solely over0:2 ms inter-arrivals, when a shorter duty cycle is used.

H
L

Figure 2.8: The shape of the resonator is parameterized according to ridge distanceL, and ridge
heightH.
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Figure 2.11: The array acts as a spring-loaded conveyor belt over which the part hops. The friction
is viscous with coefficient�. The average part heightd is a function of the part’s massM and the
supporting spring’s stiffnessk. The belt’s feed rate� is a function ofd.
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Chapter 3

The Coulomb Pump: a Novel Parts

Feeding Method using a

Horizontally-Vibrating Surface

Part feeders, which singulate and orient parts prior to packing and insertion, are critical

components of an assembly line and one of the biggest obstacles to flexible assembly. Vibratory

bowl feeders use 3d vibrations of a rigid bowl to feed industrial parts along a helical track [11].

In each vibration cycle, a part undergoes sticking, hopping, landing, and sliding motion modes. In

such applications one is not concerned with part positioning accuracy nor with premature part wear

due to repeated collisions with the feeder.

In the spirit of minimalism [12], we consider a simpler vibrations-based parts feeder de-

sign based on a horizontally vibrating flat plate, as shown in Figure 3.1. A linear motor (e.g., a

voice coil) accelerates the plate along a single degree of freedom. Parts lay flush with the plate;
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force is transferred to the part via dynamic friction (assuming the plate vibrates fast enough). This

reduces part wear (assuming sliding friction is better than rigid collisions), and improves part motion

controllability.

motor

x

z

y

feed

part plate

Figure 3.1: Our proposed feeder design: a flat plate, actuated by a linear motor, vibrates along a
single degree of freedom. Parts lay flush with the plate. The plate’s pump-like motion results in
positive net dynamic frictional force applied to the part per cycle, causing the part to feed forward.

Each plate vibration is an asymmetric, pump-like closed motion along a single degree

of freedom: the plate spends more time moving forward than backward. Since dynamic frictional

forces are independent of the relative velocity at the part-plate interface, this type of motion results

in positive net force applied to the part per cycle, resulting in forward feeding.

In designing plate vibration profiles, i.e., the waveform input to the motor, we consider

issues of wave simplicity (ease of synthesis) and low bandwidth (anti-resonance). Two “canonical”

waveforms types are analyzed: bang-bang and sinusoidal. In the former, the motor is driven at

either full or zero throttle; in the latter, input to the motor consists a low frequency sine plus its

first harmonic. Analytic expressions for both feeding forces and feed rates are derived. A feed rate

performance measure is defined which allows for some quantitative comparison of the two methods.

Results for the sinusoidal method are informally verified with dynamic simulation.

A prototype of the feeder has been built with inexpensive parts. A simple part feeding
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experiment is presented.

The remainder of this Chapter is organized as follows: In Section 3.1 we present the

part feeder’s mechanical model and the principle of pump-like motion, or “time-asymmetry”. In

Section 3.2, we consider motion waveform design and compare two possible controls: bang-bang

and sinusoidal. In Section 3.3 we present a simple experiment performed with a prototype of the

feeder. A Summary is presented in Section 3.4.

3.1 Part Feeding Principles

3.1.1 Feeder model

The parts feeder we consider is illustrated in Figure 3.2. A waveform generatorW pro-

duces a periodic signal which is power-amplified (A) and fed to a linear motorM . The motor

converts input energy into output forcefext, applied alongx to a flatplate S. The plate is con-

strained to move along a single horizontal dimension (e.g.,x), with gravity acting perpendicularly

(along�z). The plate’sx compliance (suspension mechanism) is modeled as a damped-spring

(k; b). One or moreparts P are placed over the plate’s surface.

z

x
A

fext
P

b

k

S
M

W

Figure 3.2: Parts feeder model: a flat plateS is actuated alongx by a linear motorM ; the plate’s
compliance/suspension is modeled as a damped spring(k; b). M converts the amplified signal
generated byW into output forcefext applied toS alongx.

Letas(t) = fext=ms denote the plate’s instantaneous acceleration, wherems is the plate’s
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mass (parts’ masses are negligible). In what follows we will ignore amplification and motor transfer

function issues and assumeas(t) can be specified directly. Letas(t) be a periodic function with

periodT . The feeder is a mass-spring system with resonancew0 occurring at [14]:

w0 =

s
k

ms
�
�

b

4kms

�2

(3.1)

ImposingT�2�=w0, i.e.,as(t) well above resonance, affords us the following nice prop-

erties:

� Plate oscillations are bounded.

� The plate’svelocity profile �s(t) is the perfect time-integral ofas(t) and has zero steady-state

DC level [14].

� Surface-part relative accelerations are above the threshold of sticking1 [26], i.e.,P is always

sliding onS.

The plate’s surface is assumed smooth and with uniform coefficient of dynamic friction

�. Let�s(t), �p(t) denote the plate’s and part’s instantaneous velocities, respectively. The Coulomb

model for dynamic friction [26] states that the instantaneous frictional force acting onP will be of

fixed magnitude�mg and act opposite to the relative velocity, i.e.:

ffric(t) = �mg sgn[�s(t)� �p(t)] (3.2)

1Actually, short periods of sticking, ignored here, will occur near the zero-crossings of relative acceleration
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3.1.2 Coulomb Sliding Friction

When two contacting surfaces slide one with respect to another (assume no lubricants are

used, i.e., consider “dry” friction), a dissipative frictional force develops, opposite to the relative

motion. Over a wide band of velocities (3 orders of magnitude, see below) the opposing force is

nearly constant with respect to velocity, namely, it is equal to�~N , where~N is the contact force (the

normal) and� is the constant of sliding friction. This widely used model is known as the Coulomb

model for sliding friction [35].

In [2], it is shown that� actually falls as relative speed increases. Measurements are given

for a mild steel brake shoe interacting with a railway steel wheel: at wheel speeds (relative to the

brake) off:1; 1; 10; 100g inches per second,� varies asf:23; :19; :18g, i.e., 3 orders of magnitude

in speed change decrease� by a mere 20%. Because in our experiments the speeds considered fall

in a much smaller range, it is appropriate to consider� constant.

In [21] light is shed on the molecular-level reasons for which sliding friction is largely

independent on relative velocity. The authors argue that (i) frictional forces are a result of the

making and breaking of weak molecular bonds between two relatively moving interfaces; (ii) the

number of such bonds is proportional to contact area; this effect is cancelled out by (iii) the fact that

contact area is inversely proportional to velocity, a non-trivial result, based on how the enmeshing

of interface molecules is altered by speed.

3.1.3 Time asymmetry

In order for a part to feed forward, it must perceive a positive net frictional force as

interacts with the plate over one oscillation cycle. The non-linear dependency of frictional force on



30

relative velocity (we view independence as a non-linear law) suggests a simple approach to achieve

part feeding: chooseas(t) such that�s(t) is positive for a longer time than it is negative. We term

such a�s(t) time-asymmetric. For simplicity’s sake, we make the followingquasi-static assumption:

the maximum change in part’s speed in one cycle�gT is negligible compared to the plate’s peak

velocity,�s;max. Since the latter is bounded byamaxT , whereamax is the peak acceleration in one

cycle, this requirement corresponds loosely to imposing�g=amax�1, which is facilitated by either

one of: a slippery surface, a lightweight plate, and/or a powerful motor.

Let �p denote the part’s “constant” velocity in one cycle. From Equation 3.2, we obtain

an expression for the average forcef1d applied to the part over one cycle:

�f1d =
�mg

T

Z T

0
sgn[�s(t)� �p] dt (3.3)

The effect of thesgn function above is to “saturate”�s(t)� �p, i.e., transform it into a

square wave. Definet+ as the duration of the positive portion of�s(t)� �p. The average force will

be linked to theasymmetry in thesgn[�s(t) � �p] square wave, i.e., tot+’s deviation fromT=2. It

can be shown that:

�f1d = �mg(
2t+

T
� 1) (3.4)

If looked at the scale of several cycles, the part’s velocity will increase if the force applied

to it per cycle is non-zero, i.e.,t+ > T=2. This process will converge when the part reaches an

equilibrium speed�eq, called thefeed rate, such that�f1d = 0. The concepts in this Section are

illustrated in Figure 3.3.
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Figure 3.3: (a) A time-asymmetric velocity profile�s(t): the length of its positive semi-cycle is
greater thanT=2; �s(t)’s peak value is�max. If the part’s velocity is zero,t+ > T=2. (b) Instanta-
neous frictional forces for a null part velocity:�s(t) � �p is “saturated” into an asymmetric square
wave. (c) The frictional force at equilibrium is a square wave with50% duty cycle. The corre-
sponding part velocity�eq is shown in (a) as the horizontal line which divides�s(t) into positive
and negative semi-cycles of equal lengthT=2.

3.2 Designing the Control Waveform

In designing anas(t) which achieves a time-asymmetric�s(t) we look for the following

properties:

� Simplicity: a functionally simpleas(t) is easy to synthesize and parameterize.

� Bandwidth: low harmonic content reduces the chance of feeder resonance. Also, the motor

will greatly attenuateas(t)’s high frequency components.

� Performance: one measure of performance is the ratio of the feed rate�eq by �s(t)’s peak
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value. Since this is bounded byamaxT , and will typically correspond to�s(t)’s negative

extremumj�minj, we define the following two performance measures:

�1 = �eq=(amaxT )

�2 = �eq=j�minj (3.5)

In what follows we present twoas(t) waveforms. The first focuses on waveform sim-

plicity, while the second attempts to minimize spectral content. We then compare their�1;2 perfor-

mances.

3.2.1 Bang-bang acceleration

A simplifying assumption is to expect that the motor can only deliver three types of forces:

full throttle forward, zero force, and full throttle backward. As it turns out, if these three force

application modes are repeated in sequence, the plate will move in a time-asymmetric manner. The

correspondingas(t) is the “bang-bang” waveform shown in Figure 3.4(a), and defined below:

as(t) =

8>>>>>><
>>>>>>:

amax 0�t < t1

0 t1�t < t2

�amax t2�t < T

(3.6)

t1 = (1� z)T=2

t2 = (1 + z)T=2

Wherez 2 [0; 1) is a parameter governing the zero-force phase duration. Namely,as(t)

3 phases are: (i) positive constant acceleration, (ii) zero-acceleration, and (iii) negative constant

acceleration. For simplicity’s sake, we let phases (i) and (iii) be of equal duration; phase (ii)’s
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length iszT . amax is the (bounded) acceleration desired in phases (i) and (iii). Integration (and

removal of the DC term) yields a piecewise linear expression for the velocity profile:

�s(t) =

8>>>>>><
>>>>>>:

amax[
T
4 (z

2 � 1) + t] 0�t < t1

amax
T
4 (z � 1)2 t1�t < t2

amax[
T
4 (z

2 + 3)� t] t2�t < T

(3.7)

t1; t2 = as in above.

The above function is illustrated in Figure 3.4.

s
amax

v (t)s

maxv

vmin

a (t)

z.T

t
max

-a
T

(a)

t
(b)

t+

Figure 3.4: (a) A “bang-bang” acceleration profile withz = 1=3. (b) The corresponding velocity
profile �s(t) shown with zero steady state DC value (due to springiness in the suspension). Shown
also is thet+, the length its positive semi-cycle.

The following expressions yield�s(t)’s maximum and minimum values:

�min = amaxT
(z2 � 1)

4
< 0

�max = amaxT
(z � 1)2

4
> 0 (3.8)
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For a fixed part velocity�p, we derive an expression fort+ in �s(t)� �p:

t+ =
T

2
(z2 + 1)� 2�p

amax
(3.9)

From Equation 3.4 obtain the average force applied to the part per cycle:

�f1d = �mg

�
z2 � �p

amaxT

�
(3.10)

The equilibrium velocity�eq is obtained by solving�f1d = 0, above, for�p:

�eq = amaxT
z2

4
(3.11)

The above equation is only valid forz < 1=2. Beyond1=2, �eq is “clamped” by�max

(see [40] for details), and decreases to zero asz approaches 1, as shown in Figure 3.5.
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Figure 3.5: The feed rate�eq plotted against thez parameter, foramax = 16, and andT = 1. Shown
also the graphs of�max and the ratior = �eq=�max. Notice that ifz > 1=2, �eq tracks�max.

A maximum feed rate ofamaxT=16 is achieved atz = 1=2 so�1 = :0625. Plugging

z = 1=2 into Equation 3.8, obtain�2 = 1=3 for this type of control waveform.
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Viscous force model

Taking the derivative of�f1d in Equation 3.10 with respect to�p and substituting in the

value of�eq from Equation 3.11, yields an interesting expression for the average frictional force as

a function of part speed:

�f1d = K(�eq � �p) (3.12)

with K =
4�mg

amaxT

So in the average sense, the part perceives the plate (under bang-bang control) as aviscous

fluid flowing forward at the feed rate, i.e., given enough time, the part’s speed will approach that of

the fluid.

3.2.2 Sinusoidal acceleration

Trivially, a cosine-likeas(t) integrates to a symmetric velocity profile. The lowest band-

widthas(t) which integrates to a time-asymmetric waveform is a cosine plus a scaled, phase-shifted,

double-frequency cosine:

as(t) = cos(t) + 2b cos(2t+ �) (3.13)

�s(t) = sin(t) + b sin(2t+ �) (3.14)

whereb and� are arbitrary2. Equation 3.4 links�f1d to the roots of�s(t) � �p. It can

be shown that Equation 3.14 will have either 2 or 4 real roots. Let us label these in ascending
2Interestingly, as(t) = cos(t) + b cos(3t� �) integrates to a velocity profile with a symmetry of the type

�s(t) = ��s(�� + t), yielding zero feeding force for anyb, �.
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order in the[��; �) interval asri, i = 1: : :4. Without loss of generality, assume thatas(r1) is

positive. So the length of�s(t)’s positive portion will be simply the sum of the distances between

consecutive root pairs, i.e.,t+ = (r2 � r1) + (r4 � r3). By expressing each root as a function of

b and� we can derive an expression for�f1d using Equation 3.4. In particular, with� = �=2, i.e.,

�s(t) = sin(t) + b cos(2t) we derive:

�f1d = ��mg 2
�
c1 +

8>>>>>><
>>>>>>:

�1 + 2
� c2 b > 1

0 jbj < 1

+1� 2
� c2 b < 1

(3.15)

c1 = sin�1

 
1�p1 + 8b2

4b

!

c2 = sin�1

 
1 +

p
1 + 8b2

4b

!

A good approximation for thejbj < 1 range isf1d�=b=3. To derive an expression for�eq,

we need to consider the roots of�s(t) � �eq, in particular we wantt+ = T=2. Careful analysis

yields a surprisingly simple result:

�eq = b sin� ; jbj < 1=2 (3.16)

At jbj > 1=2, the number of roots of�s(t)� �eq jumps from 2 to 4 causing�eq to decay,

similar to saturation atz > 1=2 in the bang-bang case. In particular, for� = �=2, we obtain:

�eq =

8>><
>>:

b jbj < 1=2

1
4b jbj�1=2

(3.17)
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At b = 1=2 and� = �=2, i.e.,�s(t) = sin(t) + cos(2t)=2, the feed rate is maximal3. �f1d

and�eq versusb, with � = �=2, is plotted in Figure 3.6.
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t
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Figure 3.6:�f1d and�eq plotted against parameterb, for �s(t) = sin(t)+ b cos(2t). Notice that these
quantities are maximal atb = 1, andb = 1=2, respectively.

Consider the more general expressions for the�eq-optimal acceleration and velocity pro-

files:

as;opt(t) =
amax



[cos(!t)� 2b sin(2!t)] (3.18)

�s(t) =
amax



[sin!t+ b cos(2!t)] (3.19)

With ! = 2�=T . The constant
 is the maximum absolute value ofcos(t) + 2b sin(2t).

It normalizesas;opt(t) soamax becomes the actual maximum acceleration. Its value is given by:


 =
(3 + c1)

p
c1 + 64b2 � 1

32
p
2

c1 =
p
1 + 128b2

At b = 1=2, 
�=1:76. The derived maximum, minimum, and equilibrium levels for this

function are as follows:
3Equation 3.17 curiously implies that the “cousin” functioncos(t) + b sin(2t) (� = ��) yields zero feed rate, for

any choice ofb.
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�min = �amaxT
3

4�


�max = amaxT
3

8�


�eq = amaxT
1

4�

(3.20)

Yielding �1 = :0452 and�2 = 1=3. Interestingly, the contraction in harmonic content

afforded by the sinusoidal drive results in no penalty for�2 and a small reduction in�1, relative to

the bang-bang method.

Dynamic simulation

Dynamic simulation was used to visualize part motion under sinusoidal acceleration (sim-

ilar results for the bang-bang case can be found in [40]). Part motion is obtained through numerical

integration of the instantaneous frictional forces corresponding to a�s(t) = sin(t) + b sin(2t + �)

velocity profile. In Figure 3.7, the part speed vs. time is shown for various combinations ofb and�.

The thickness of each curve is related to the variability in part speed during each cycle. As apparent,

part speed approaches�eq as time advances. Figures 3.8(a,b) illustrate this phenomenon at a much

smaller (per-cycle) scale. Namely, part speed becomes, at equilibrium, a triangular waveform of

positive (resp. negative) derivative when�p < �s(t) (resp.�p < �s(t)).

3.3 Hardware Experiments

A prototype of the parts feeder built out of inexpensive parts is shown in Figure 3.9. A thin

slab of lightweight, smooth, kitchen-top material is used as the plate. Four motors are attached to the

plate (one per side) by springy brass shafts, forming a combined suspension/actuation mechanism.
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Figure 3.7: Dynamic simulation of part motion: under�s(t) = sin(t) + b sin(2t+ �), the part’s ve-
locity is plotted against time for(b; �) = f(12 ; �2 ); (1; �2 ); (12 ; �4 )g, corresponding to the top, middle,
and lower curves. Each curve shows the part accelerating from zero velocity to the predicted feed
rates(12 ;

1
3 ;

1
4). The curves’ “thickness” reveal the change in part speed per cycle.

Each motor is a voice coil removed from old hard disks. The motors can command horizontal plate

vibrations along its 3 dof’s – this feature is used in our work on parallel part manipulation [38].

To achieve 1d vibrations, two opposing motors are turned off, while the other two opposing ones

are operated in tandem, at 180 degrees phase shift. Figure 3.10 shows snapshots of a part feeding

experiment – the bang-bang acceleration profile is used withz = 1=3 and1=T = 30 Hz. Parts

propel forward at about 1 cm/s.

3.4 Summary

With respect to existing hop-based vibratory feeders, our design is mechanically simpler,

reduces part wear caused by repeated collisions, and increases part motion controllability. Guide-
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Figure 3.8: The part’s speed (solid line) shown superimposed on the velocity profile (dashed line),
for (b; �) = (12 ;

�
2 ), at the equilibrium level�eq = 1

2 . Top: part speed variability is small compared
to �max. Bottom: part acceleration/de-acceleration visible at a smaller scale.

lines based on simplicity, bandwidth, and feed rate performance have been defined in designing a

“good” control waveform. The sinusoidal method, despite its minimal bandwidth, results in a small

performance loss with respect to the bang-bang control method. A sinusoidal waveform is more

likely to be used in practice since it allows us to compensate for both the amplifier’s and the mo-

tor’s frequency response. Quantitative experiments with the feeder’s prototype are the next step on

this work. In particular, feed rates have to be measured and matched with the analytical results as

waveform parameters (e.g., phase and amplitude relationship in sinusoidal case) are varied.
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Figure 3.9: Our feeder’s prototype: the plate is a thin square slab of kitchen-top material. Four disk
drive motors are attached to the plate through thin brass shafts. Two coins are shown on the plate.
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Figure 3.10: Three snapshots showing a penny and thin wood slab feeding along our feeder’s pro-
totype. The bang-bang acceleration method was used.
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Chapter 4

A Flat Rigid Plate is a Universal Planar

Manipulator

We consider the problem of parallel part manipulation, i.e., the simultaneous position and

orientation control of one or more parts in a bounded region of the plane. Difficulties with planning,

execution speed, and end-effector clutter deem traditional pick-and-place methods inappropriate,

especially if parts are numerous and their size/separation is small. Research onactive surfaces ad-

dresses these issues by proposing that the surface on which parts rest should double as the actuation

mechanism. One popular design concept is that of a massively-parallel array of actuators. A de-

sired manipulation force/torque is synthesized by addressing a set of actuators lying in the vicinity

of, or directly under, a part of interest. Many such devices have been recently proposed, differing

essentially in actuator type [9, 20, 43, 24, 31, 23].

Array-based active surfaces require large actuator densities to achieve good force synthe-

sis resolution. One such device contains an excess of 10,000 micro-actuators over an area of a few
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Figure 4.1: Top: Model of the proposed device – a flat horizontal plate, actuated by motors, is
constrained to move horizontally. Parts are shown resting on the plate. Bottom left: a prototype
of the device we’ve built with inexpensive parts: the plate is a thin square of smooth kitchen-top
material; the motors are hard disk voice coils. Bottom right: a closeup of two motors, showing a
motion sensor attached to the plate.

squared-cm [9]. The large number of tiny moving actuators can pose both fabrication and mainte-

nance difficulties. In the spirit of minimalism [12], we address this issue by searching for a radically

simpler active surface design which retains force synthesis capabilities similar to array-based de-

vices. Our main contribution is to show that a single horizontally-vibrating flat plate is such a

device. Owing to a special property of Coulomb friction (see below), we show that a closed hori-

zontal motion of a flat plate can be computed which gives rise to desired frictional forces (averaged

over the motion) at a finite number of points on the plate.

A model of our proposed device is shown in Figure 4.1. A horizontal, flat plate is actu-

ated along its three degrees of freedom (two translations and one rotation) by linear motors, e.g.,

voice coils. The plate vibrates rapidly, causing parts to displace/rotate as they interact (via dynamic
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friction) with the plate. At the heart of our result is a sequence of 3 observations:

� The magnitude of dynamic friction is constant and independent of relative velocity.

� A rotation of the plate about a given point (as produced by any instantaneous rigid velocity)

gives rise to a frictional forcefield in which forces at every point are constant and tangential

with respect to the center of rotation.

� The family of such fields is not closed under addition (unlike the family of rigid velocity

fields), i.e., the sum ofN such fields isN -dimensional. In contrast, the family of rigid

velocity fields is 3-dimensional.

We consider a closed motion of the plate composed of a finite sequence of small rotations,

each about a known center. Centers of rotation are chosen away from the parts’ locations (to avoid

stiction effects). Assuming part motion is negligible throughout the sequence, the net force applied

to the part after the plate completes the sequence is roughly the sum of each individual frictional

force field, evaluated at the part’s location. Owing to non-additivity of rotation-induced frictional

force fields (above), we show that the problem of synthesizing desired average forces at parts’

locations reduces to that of solving a linear system for the “intensity” (e.g., the duration) of each

rotation. By specifying thecurl of the net frictional force field (a simple addition to the linear system

being solved), we can control part rotation at one or more points.

A limitation of the current approach is that the generated force fields are divergence-

free, and therefore not appropriate for force-field-based sensorless manipulation [19]. In the setup

envisioned, permanent sensing is required (e.g., low-level vision) which informs the algorithm about

parts’ positions.
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Dynamic simulation is used to verify the algorithmic/numerical validity of our method.

In one experiment, two parts follow user-defined, independent trajectories, simultaneously, as they

interact with the plate. In a second experiment, a set of 6 black and 6 white parts, initially scattered

at random over the plate, are sorted, in parallel. A prototype of the device has been built out of rather

inexpensive parts, as shown in Figure 4.1. The plate is a thin slab of smooth kitchen-top material;

the motors have been removed from old hard disk drives. Currently, PC-based control and sensing

software is being developed which will be integrated with existing hardware. While many practical

difficulties are expected, we feel the current approach is indeed feasible and will afford enormous

simplifications to the current state of the art in active surface design.

The remainder of this Chapter is organized as follows: In Section 4.1 we describe device

kinematics, the friction model, and the non-additivity of frictional force fields. In Section 4.2 we

describe the plate motion computation method based on a sequence of rigid rotations. In Section 4.3

we present two dynamic simulation results for two parallel manipulation examples. A Summary

along with directions for future work is presented in Section 4.4.

4.1 Part Manipulation Principles

LetS (for Surface) denote the plate;S is constrained to move in its own plane (3 dof). Let

Os = (xs; ys), and�s denoteS’s translation and orientation relative toXY , Figure 4.2(a). Consider

a smooth plate motionS(t) = [Os(t); �s(t)]
t which isclosed, i.e.,S(0) = S(T ), for someT > 0.

The plate’s tangential velocity�s at a pointP is:

�s(P; t) = _Os(t) + _�s(t)�[P �Os(t)] (4.1)
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Figure 4.2: (a) The dotted square representsS at its home position, with its center at the originO;
The solid square representsS translated byOs and rotated by�s. The part is at pointP . (b) A rigid
motion ofS aboutC yields a frictional force field of tangential vectors of constant magnitude.

+ +

Figure 4.3: Left: the sum of two velocity fields is a velocity field. Right: the sum of two frictional
force fields is not in the same family.
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Let us consider pointsP much larger in magnitude than the plate’s maximum translation,

i.e., jjP jj�maxt jjOs(t)jj, so thatP �Os(t)'P . Equation 4.1 reduces to:

�s(P; t) = _Os(t) + _�s(t)�P

= [u1(t)� yu3(t); u2(t) + xu3(t)]
t (4.2)

Where symbolsu1(t), u2(t), andu3(t) represent_xs(t), _ys(t), and _�s(t), respectively.

NoteS(t) closed implies
R T
0 ui(t) dt = 0; i = 1: : :3.

Consider a part, modeled as a point mass lying atP onS. Let �s and�p denote, respec-

tively, plate’s and part’s instantaneous velocities.

Assumption 1. P is always sliding on S – relative accelerations at P give rise to inertial forces

above the threshold of static friction [26], for most1 t 2 [0; T ).

The Coulomb dynamic frictional forcef2d is of constant magnitude�mg and opposite to

the part’s motion relative to the surface [26], i.e.:

f2d = �mg
(�s � �p)

jj�s � �pjj (4.3)

If the part’s velocity�p(t) is negligible compared to�s(P; t) for mostt 2 [0; T ), Equa-

tion 4.3 reduces to:

f2d(P; t) = �mg
�s(P; t)

jj�s(P; t)jj (4.4)

1S(t) closed implies that_�s(t) will have one or more zero-crossings within[0; T ) during which the part will tend to
stick to the surface; while we ignore stiction, Assumption 1 can only be true for “most”t.
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Assumption 2. The part’s position P does not change appreciably during the plate’s closed motion.

An upper bound for the part’s maximum displacement inT seconds given frictional forces

is jj�P jjmax = �gT 2. We assume this quantity negligible with respect tojjP jj.

So the average frictional force�f2d applied to the part (with its position presumed constant)

is the integral of the instantaneous frictional forces atP divided by the length of the motion:

�f2d(P ) =
1

T

Z T

0
f2d(P; t) dt (4.5)

4.1.1 Instantaneous force fields

Chasles’ theorem [14] in planar kinematics states that any instantaneous rigid velocity

[u1; u2; u3](t) corresponds to a rigid rotation about a centerC = (cx; cy) at angular velocityw

where:

[cx; cy; w] = [�u2=u3; u1=u3; u3] (4.6)

If the ui(t)’s are directly controllable, we can choose them soS executes a rigid rotation

about a fixed centerC. Alternatively, the actuation kinematics maybe such that rotating the surface

about one (or more) fixed points is a simple procedure.

Consider an instantaneous rotation(cx; cy; w) of S. The tangential velocity�s at point

P = (x; y)t isw�(P � C), or:

�s(P ) = w

2
664 cy � y

x� cx

3
775 (4.7)
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With each point on the plate moving tangentially, a stationary part at pointP will experi-

ence an instantaneous frictional force of the typef2d(P ) = �mg�̂s(P ), where�̂s is the unit vector

along the tangential velocity. So any rigid plate velocity gives rise to aninstantaneous force field

of the type illustrated in Figure 4.2(b): force at every point is perpendicular to the radial line, and

of fixed magnitude�mg. Low tangential accelerations nearC may cause the part to stick to the

surface. We ignore this effect by assuming the rotation center is far enough from the part.

4.1.2 Non-additivity of force fields

Let k;C(P ) and�k;C(P ) represent, respectively, the value of arbitrary velocity and aver-

age force fields at a pointP , wherek andC denote the fields’ “strength” (a linear scaling parameter,

explained below) and center of rotation, respectively. Algebraically:

 k;C(P ) = k �mg R90(P � C)

�k;C(P ) = k �mg R90
P � C

jjP � Cjj (4.8)

R90 = rotate-by-90o-matrix

Let	 (resp.�) denote the 3-dimensional family of ’s (resp.�’s):

	 = f k;C jk 2 R; C 2 R2g

� = f�k;C jk 2 R; C 2 R2g

It can be shown that for 1 =  k1;C1
and 2 =  k2;C2

,  1 +  2 =  k3;C3
with:
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k3 = k1 + k2

C3 =
k1C1 + k2C2

k1 + k2

i.e.,	 is closed under addition. This property is however not true for�, namely:

Observation 1. � is not closed under addition: Let �1; �2 2 �. Then �1 + �2 62 �. Namely,

:9k3; C3 such that �1 + �2 = �k3;C3
.

In other words, the sum of two force fields does not lie in the original space, i.e., the

resulting field will be part of a higher-dimensional family of vector fields, as depicted in Figure 4.3.

4.1.3 The parallel manipulation task

ConsiderM parts distributed overS at known locationsPi; i = 1: : :M . Let �fi(k) be

a desired average force for parti at a given instant. The goal is to compute a closed motionS(t)

which yields �f2d(Pi) = �fi; 8i, as shown in Figure 4.4.

1

P1

P

f2

S(t)

2

f

f 3

P3S

Figure 4.4: The parallel manipulation task consists in computing a closed motionS(t) for the
surfaceS which can generate desired frictional forces�fi (averaged over the motion) at each of the
parts’ locationsPi.
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The setup envisioned is as shown in Figure 4.5. A snapshot ofS is obtained with a camera

and sent to the computer. Image processing algorithms are used to determine thePi’s. From the

state within a manipulation task, desired forces�fi are computed for each part; this is followed by a

solving phase in which a closed motionS(t) is computed for the surface; this motion is then sent out

as commands to motors driving the surface, and the loop closes. Feedback helps in compensating

for deviations from the desired type of manipulation, caused by modeling errors, unevenness in

friction, control inaccuracies, etc.

M

P

camera

i

S

Figure 4.5: Closed-loop manipulation: a camera sends images to a computer, which sends com-
mands to a motor which actuates the surface which moves the parts.

4.2 The Method of Sequencing Rotations

ConsiderN consecutive small-angle rotations of the surface,N�2M , each about a dis-

tinct point Cj ; j = 1: : :N . Let the duration of each rotation be an independentkj , such that

P
kj = T . Let �j = �mg �kj ;Cj

. For simplicity, we assume the entire sequence of rotations is a

closed motion of the surface. In reality, each motion in the sequence is a time-asymmetric rotation

[37] (scaled by a design parameter) about the associated center.

Since parts move negligibly during the entire motion (Assumption 2), or, equivalently,

that the�j ’s are slow-varying around thePi’s, we can state:
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Observation 2. Superposition: The net average force �fi felt by Pi after N rotations is the weighted

sum of the �j’s at the parts’ starting positions Pi:

�fi =
1

T

NX
j=1

�j(Pi); i = 1: : :M (4.9)

Assume theCj ’s are pre-determined (e.g., by the manipulation kinematics), and that the

�fi are given by the manipulation task. Combining Equations 4.8 and 4.9 reduces the parallel part

manipulation problem to finding a solution vectorK = (k1: : :kN ) which satisfies the linear system

A:K = b, with:

Aij =

8>><
>>:

�a(i; j) ; i = 1; � � �M

b(i�M; j) ; i =M + 1; � � �2M
j = 1� � �N (4.10)

bi =
N

�mg

8>><
>>:

�fxi ; i = 1; � � �M

�fyi�M ; i =M + 1; � � �2M
and:

a(i; j) = (pyi � cyj )=rij

b(i; j) = (pxi � cxj )=rij

rij = jjPi � Cj jj

4.2.1 Force specification example

Consider a rectangular surface rotatable about its 4 cornersC1 = (�1;�0:5)t; C2 =

(1;�:5)t; C3 = (1; :5)t; C4 = (�1; :5)t. Consider two partsP1 = (:5; 0)t andP2 = (�:75; :25).
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Let � = :25, g = 10, m = :04 (�mg = :1) (note: all in SI units). Let�f1 = (:01; :01)t and

�f2 = (�:01; 0)t. The goal is to compute a 4-long vectorK = (k1; k2; k3; k4) and execute 4

rotations consecutively about each ofCi’s (Figure 4.6 with each such motion “scaled”, in duration,

by the computedkj . The components of the4�4 linear system become:

1

k2

c2

c3 c4

k1
k3

c

k4

Figure 4.6: The surface executes 4 rotations about each of its corners, say, in CCW order. Each
rotation is scaled (e.g., in duration) by a computedkj .

A4�4 =

2
66666666664

�:316 �:707 :707 :316

�:949 �:394 :141 :707

:949 �:707 �:707 :949

:316 �:919 �:990 :707

3
77777777775

b = (:4;�:4; :4; 0)t

By invertingA, computek = A�1:b and obtainK = (:58;�:39; :48;�:095)t . As shown

in Figure 4.7, the resulting force field is as desired at the part’s locations.

4.2.2 Rotation control

Thecurl r�f of a vector fieldf = (fx; fy)
t is the scalar functionddxfy � d

dyfx. It mea-

sures the rotation of an infinitesimal area element flowing along the field [42]. A simple expression

yields the curl of a rotation-induced force field�k;C :
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-1 -0.75-0.5-0.25 0.25 0.5 0.75 1

-0.4

-0.2

0.2

0.4

-1 -0.75-0.5-0.25 0.25 0.5 0.75 1

-0.4

-0.2

0.2

0.4

Figure 4.7: Left: average force field after 4 rotations aboutS’s corners. The field points in the
desired directions at the location of each part, shown as black disks. Right: average force field
obtained after 3 rotations aboutC1, C2, andC3 in sequence. Zero force and negative curl are
desired at the part’s location(0:5; 0). The result is a CW whirlpool centered on the part.

r��k;C(P ) = k
�mg

jjP � Cjj (4.11)

While the curl is measured at a point and the part’s footprint will be over an area, one way

to induce rotation is to specify a non-zero curl under the part’s center of mass, while simultaneously

specifying a zero-force for that point. Since the generated fields are continuous, this will create a

“whirlpool” centered at the part.

The curl is a linear operator, so for a set of vector fields�i, r�
P

i �i =
P

ir��i. So

the curl of the net average force field (Equation 4.9) can be written as:

r�fi(Pi) =
�mg

T

NX
j=1

kj
jjPi � Cj jj (4.12)

The above amounts to a single linear constraint, i.e., it becomes a row of theA matrix

used in Equation 4.10. So besides specifying zero-part motion atM locations (amounting to2M

constraints), we can specify the curl, simultaneously, atQ locations (Q constraints). To avoid over-

constraining the system,2M +Q�N , the number of rotation centers.
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4.2.3 Curl specification example

Consider a single partP1 placed at location(:5; 0). We want to specify�f1 = (0; 0)t (2

constraints) and the curl atP1 (1 constraint) to beÆ1 = �:05 (negative curl means the field should

be turning clockwise around that point). Since only 3 linear constraints are specified, there in no

need for a fourth rotation aboutC4. The resulting3�3 linear system becomes:

2
6666664

�s11 �s12 �s13

c11 c12 c13

r�111 r�112 r�113

3
7777775

2
6666664

k1

k2

k3

3
7777775
=

N

�mg

2
6666664

fx1

fy1

Æ1

3
7777775

Which yields:

2
6666664

�:316 �:707 :707

:949 �:707 �:707

:633 1:41 1:41

3
7777775
:

2
6666664

k1

k2

k3

3
7777775
=

2
6666664

0

0

�1:5

3
7777775

Solving the above yieldsK = (�:59;�:27;�:53). The resulting field, illustrated in Fig-

ure 4.7, contains a CW whirlpool at the part’s position, as desired. The integral of the forces under

the part generates negative torque, resulting in CW rotation.

4.2.4 Ordering rotations

Superposition assumes the fields are slowly-varying around the parts’ neighborhoods.

However, field variability increases as one approaches the center of rotation (conversely, at in-

finity, an rotation-induced force field looks like a constant field). Furthermore, field variability is

proportional to the scalingkj of a particular rotation. For every center of rotationCj , define�j , the
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center’srotation priority as follows:

�j =
kj

mini jjPi � Cjjj

A heuristic approach to reduce rotation-ordering effects which weaken the superposition

assumption is to rotate about theCj ’s in descending order of rotation priority,�j, above. In Sec-

tion 4.2.1,(�1 � � � �4)t = (:16; :031; :43; :34)t , so the “optimal” rotation ordering isC3,C4,C1, and

C2.

A more rigorous approach to understand order-dependent errors would have to take into

account the component of each motion lying on thelie-bracket [�1; �2] of two consecutive rotations

[32].

4.2.5 Ill-conditioning

The inverse ofA (Equation 4.10) becomes ill-conditioned when at least one the following

is true:

� Distinct field values are specified at nearby locations (e.g., for parts approaching each other).

� The field value is specified too far from the centers of rotation.

In the first case, specifying distinct field values in a small neighborhood forces high

derivatives in the resulting (average) field. Since the latter is the sum of a set of smooth functions

�i, this de-stabilizes the inversion.

For the second case, consider a pointP very far from a center of rotationC. The resulting

force field aroundP will be nearly constant and perpendicular toP � C (tangential lines become
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straight lines). By superposition, the same effect will happen for a sequence of rotations about

several distinct centers. Consequently, in that region,A’s rank will be limited to2, the rank of the

family of constant fields.

Ill-conditioning yields solution vectorsK with unacceptably large entries. This can be

addressed by introducingredundancy, i.e., additional centers of rotation, so thatA becomes rect-

angular. In our implementation, singular-value decomposition (SVD) is used to find the smallest-

magnitudeK, satisfying the constraints [33]. Conveniently, this algorithm allows us to place maxi-

mum bounds on the entries ofA�1 [33].

Another method of dealing with ill-conditioning is to change the location of centers of

rotations. If a given set of rotation centers produces an unstable matrix inversion, an alternative set

can be specified. Typically, the set of points the surface can rotate about will be a function of the

particular motor/suspension kinematics.

4.2.6 Sensorless manipulation

Divergence relates to the shrinkage or expansion of a unit area element flowing through

the field [42]. In manipulating parts with force fields, non-zero divergence can be used to automat-

ically reduce the uncertainty about a part’s location and/or orientation (see [19] for an example).

Unfortunately, the divergence of a frictional force fieldr� = �x;x + �y;y is, by inspection, zero

everywhere. Linearity implies that average force fields obtained byN rotations is also divergence-

free, ruling out sensorless manipulation, hence the feedback loop setup illustrated in Figure 4.5.
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4.3 Dynamic Simulation Examples

Dynamic simulation was used to informally verify the effectiveness of our method. Two

parallel manipulation examples were considered, involving 2, and 10 parts, respectively. Part(s) are

modeled as point-masses. Specific plate motions (as computed by our method) give rise to local

tangential velocities which accelerate parts in given directions. Actual part motion is computed via

numeric integration of frictional forces.

4.3.1 Trajectory following for 2 parts

Two polygonal trajectories are specified for two parts placed on the plate. Each part

must follow their trajectory with constant speed. The motion is broken down into small steps. At

each step, a simple PD controller (one per part) computes force needed to maintain the part in

its trajectory and with the desired speed. This information is fed to the plate motion computation

algorithm which then returns the required set of plate rotations. In this case, 9 rotations are used per

closed motion, yielding 5 degrees of redundancy in the matrix inversion. Graphical output produced

by the simulation is shown in Figure 4.8.

4.3.2 Parallel sorting of 10 parts

A set of 5 grey and 5 black parts is scattered at random over the plate. The goal is to

move all black (resp. grey) parts to the plate’s left (resp. right) edge. We use a very simple type

of “sorting” algorithm: at every step, apply a force along�x (resp.+x) to the black (resp. grey)

parts. The24 rotation centers are used per complete plate motion. With a total of 20 constraints

per step, this gives us 4 degrees of redundancy. SVD is used to compute a bounded solution vector.
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As parts are pushed to their respective sides, they come inevitably close to each other. The result-

ing ill-conditioning causes SVD’s solutions to produce net forces which deviate from the desired

ones. Interestingly, this produces a convenient effect – parts coming close to each other will deviate

from their horizontal paths and “dodge” each other, avoiding collisions. Snapshots of a dynamic

simulation of this example are shown in Figure 4.9.

Figure 4.8: The trajectory following simulation. Read from left to right, top to bottom. At the
top left snapshot, two parts are shown (dark disks) at the beginning of their planned rectangular
trajectories. Net force field vectors (assuming superposition) are shown at each snapshot.

4.4 Summary

A novel design for a parallel, 2d part manipulator has been proposed which is mechan-

ically simpler than actuator-array counterparts but which requires a more complex force synthesis

algorithm. A prototype of the device has been built with inexpensive parts. Physical implemen-

tation of the current method is now underway. Low-level software routines are being written for
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both motor control and vision-based sensing of part position. Theory underlying our method has

been presented in a rather informal way. A more formal treatment of order dependent effects and

part dynamics is desirable. A generalization of the current method for manipulation in 3d is being

worked on.

Figure 4.9: The part sorting simulation. The sequence should be read left to right, top to bottom. 5
dark and 5 grey disks appear in the first snapshot at their original locations. The goal is manipulate
them in parallel so at the end all black go to the left and all grey go to the right. Force field vectors
are shown for each snapshot. Also shown are the trails left by the motion of each part. Note that
only strictly horizontal force is applied to the parts – the deviations are caused by ill-conditioning
in the linear system.
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Chapter 5

Building a Universal Planar

Manipulator

Distributed manipulation devices make use of a large number of actuators, organized in

array fashion, to manipulate a small number of parts [25, 19, 10]. Inspired by minimalism in robotics

[12], in our own research we have looked at a complementary question: can a device with few

degrees of actuation freedom be used to independently manipulate a large number of parts? The

well-known bowl feeder [11] achieves just that at the expense of non-programmability, i.e., its

function – e.g., part presentation at known orientation – is determined once and for all by its design.

In previous publications [37, 38, 39] we have shown that, surprisingly, aprogrammable

parallel manipulation device – a Universal Planar Manipulator (UPM) – can be built out of a single

flat plate. In the approach proposed, a horizontally-vibrating plate manipulates (i.e., translates and

rotates) parts via frictional interactions (of the sliding type) with the latter. Perhaps the simplest form

of this type of manipulation is rectilinearpart feeding. In [37] we show that by introducing pump-
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like asymmetries on horizontal vibrations of a flat plate, parts placed on its surface are propelled

forward at a well-known speed. Here we use similar friction-based actuation principles to achieve

parallel part manipulation.

Theparallel manipulation problem we consider is that of translating and/or rotating mul-

tiple parts along independent trajectories, e.g., as required by a high-level task such as part presen-

tation, sorting, or assembly/mating. Here we ignore part rotation, focusing on translation only (part

orientation can be achieved under the same method, see [37]). The basic problem solved is to com-

pute a suitableclosed motion of the plate which creates “correct” frictional forces under each part,

i.e., friction averaged over the entire motion causes each part to move a discrete step along the part’s

independent trajectory. If this procedure is iterated over quickly, smooth parallel manipulation is

achieved.

An important contribution has been to show that a sequence of plate rotations about a

known set of centers is just such a desired closed motion [39]. Each iteration of the manipulation

algorithm reduces to (i) locating parts, (ii) obtaining the desired steps, (iii) computing theduration

of each rotation, and (iv) executing the rotation.

An important issue is that the current approach requires that parts’ positions be known at

all times, e.g., through image sensing. Indeed, this precludes open-loop, sensorless manipulation,

which has been recently investigated as an application for distributed-manipulation devices.

The main contribution to the field of distributed manipulation is to show that device com-

plexity (indeed actuator count) can be dramatically reduced and traded for more sophisticated con-

trol.

This Chapter is organized as follows: in Section 5.1 we concisely review the theory behind
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our manipulation algorithm. In Section 5.2 we address practical implementation issues in building

a prototype of our device. In Section 5.3 we present preliminary experimental results. A Summary

is presented in Section 5.5.

5.1 Review

5.1.1 The Manipulation Algorithm

The manipulation problem being addressed is illustrated in Figure 5.1(a).N parts lie

at known positionsPi; i = 1: : :N within a bounded area of the plane. A desired small, straight

motion�Pi = (�P x
i ;�P

y
i )

T is prescribed for each part, e.g., along a trajectory associated with a

high-level task such as part mating, sorting, etc. Define a set of pointsCj ; j = : : :M , M�2N in

the plane, calledcenters of rotation (see below).

Through friction (see below), our manipulation algorithm can alter parts’ positions via a

special motion primitive: parts can be “told” to rotate aconstant distanced about any of theCj ’s.

This is unlike a rigid rotation for which part’s displacements would be proportional to their distance

from C. We considerd sufficiently small so the primitive rotation is approximately straight and

along the tangent, as shown in Figure 5.1(b). This primitive causes parts toflow along a vector field

�C = (�xC ; �
y
C)

T defined as:

�C =
(P � C)?

jjP � Cjj (5.1)

Note that at any pointP , �C is unit and perpendicular toP � C. It can be shown that

the family of these fields is not closed under addition, i.e.,f�Cj
g; j = 1: : :M will, in general, span

anM -dimensional space. Compare this with the linear space of rigid rotations which is closed at
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Figure 5.1: (a) The planar manipulation problem:N partsPi need to execute a motion�Pi, e.g.,
along trajectories�i specified by some high-level task (assembly, sorting, etc.). A set ofM points
Cj is pre-specified about which the parts can execute a special type of rotation (see below). In
the picture,N = 2 andM = 4. (b) The non-linear rotation primitive used by the manipulation
algorithm: all partsPi flow tangentially with respect toC by a specifiedd.
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dimension 3. [38].

Define a set of scalarsdj ; j = 1: : :M . Define�P 0i as parti’s net displacement after it has

flowed a distancedj along�Cj
, sequentially, forj = 1: : :M . With thedj ’s small, the concatenation

of flows is approximately equal to their sum (i.e., we ignore second- and higher-order terms of the

Taylor expansion), and write a linear expression for the�P0i :

�P 0i =
MX
j=1

dj�ij ; i = 1: : :N (5.2)

where�ij is simply�Cj
evaluated atPi. The above can be expressed succinctly as the

following linear system:

�P = �:d (5.3)

With:

�P =

2
4 �P x

i

- - - - -
�P y

i

3
5
2N�1

� =

2
4 �xij

- - - - -
�yij

3
5
2N�M

d = [dj ]M�1

The manipulation algorithm can be summarized as follows:

1. Obtain (e.g., from sensors) current part positionsPi

2. Obtain (e.g., from task) the desired part translations�Pi
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3. Solve Equation 5.3 ford, i.e., compute��1:�P

4. Rotate partsdj aboutCj , sequentially, forj = 1: : :M

5. Repeat

After each sequence of rotations, we expect:

�P 0i
�= �Pi; i = 1: : :N

Visualization of the concepts discussed in this Section is provided in Figures 5.2 and 5.3.

Figure 5.2: Race Track Experiment: three parts are allowed to “race” simultaneously (i.e., flow)
along a non-linear rotation field. Their initial positions are all along a line directly to the right of the
center of rotation, which is located at the lower left corner of the field. Four consecutive snapshots
of the motion are shown. As expected, the inner parts advance more rapidly than the outer ones.

5.1.2 Time-Asymmetric Motion

Consider a horizontal surfaceS constrained to move alongx. Let the surface’s motion

be periodic, with velocity profile�s(t), �s(t) = �s(t + T ). Consider a partP of massm lying
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Figure 5.3: Four snapshots of a 2-part parallel manipulation problem: in (a) two parts are shown
lying at starting locationsS1 andS2; the goal is to move them to final locationsF1 andF2. Four
centers of rotationCj ; j = 1: : :4 are specified, each at the corners of a square workspace. The
rotations will take place starting withC1, in counterclockwise order. Snapshots (a) through (d)
show the parts’ motions incrementally, after each rotation. Intermediate positions are labeled1
through4, and connected by a polygonal line. (d) Part’s final positions (labeled4) deviate from
the intended destinationsF1 andF2. This error was made intentionally large by prescribing large
desired steps for each part.

onS, with velocity �p. AssumeS’s acceleration relative toP is high enough so that (i) the part is

always sliding onS and (ii) the part’s speed�p is constant within one cycle, i.e., frictional forces

are negligible compared to inertia. The average Coulomb friction�f1d applied to the part per cycle

is given by:
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�f1d =
�mg

T

Z T

0
sgn[�s(t)� �p] dt (5.4)

Definet+ as the duration of positive�s(t) � �p within one cycle. It can be shown [37]

that:

�f1d = �mg(
2t+

T
� 1) (5.5)

With t+ > T=2, �f1d is positive, and the part will feed. In [37], we considered�s(t) of the

form:

�s(t) = cos(wt)� 1

2
cos(2wt) (5.6)

With w = 2�=T .

Modulo a phase change, the above is equivalent to functions:

� sin(wt) +
1

2
cos(2wt)

� cos(wt) � 1

2
cos(2wt)

This particular velocity waveform was picked because it contains only two harmonics and

delivers a large�f1d relative to its peak acceleration [37]. In particular, for�p small, it can be shown

that �f1d �= 0:24�mg, denoted�f0.

Consider now a surfaceS which is constrained torotate about a fixed pointC. Letws(t)

represent the periodic angular velocity ofS aboutC. Let ws(t) be of the form of Equation 5.6.

Then for a part resting (jj�pjj = 0) at positionP onS, the surface will apply�f0 average force along

(P � C)?. Assuming the Coulomb model of sliding friction applies, over a time�t, the part will
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displaced / �t2, regardless of its distance fromC (in fact, nearC tangential accelerations are

too small and the part won’t slide). The moral is: vibratory rotation can be used to synthesize the

“non-linear rotation primitive” described in Section 5.1.1.

5.2 Practical Challenges & Solutions

5.2.1 Actuation Kinematics

One way to accomplish the oscillatory surface motion prescribed in Section 5.1.2 is to

have the surface’s three dof’s (x, y, and�) move in phase with velocities as in Equation 5.6. Note

that the instantaneous velocity of a rigid body in the plane is related to its instantaneous center of

rotation by the following map [14]:

2
6666664

cx

cy

w

3
7777775
=

2
6666664

� _y= _�

_x= _�

_�

3
7777775

(5.7)

The actuation kinematics illustrated in Figure 5.4 is designed to apply forces along the

table’s 3 dof’s so thatC can be easily chosen. As shown, the plate is positioned at the center of a

working area. Four linear actuators are used to apply forces to the each of the plate’s sides. Shafts

connect the table to the motor, allowing the latter to both push and pull on the former. Shafts are

stiff along the actuation direction and compliant perpendicularly.

Let X1;X2; Y1; Y2 denote the force applied to the table the motor positioned to the left,

right, bottom, and top of the table, respectively, as shown in Figure 5.4(a). At the operating fre-

quencies, overall table displacements will be small, so we can decouple cross-talk between dof’s.
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Figure 5.4: The actuation kinematics: (a) Four linear actuators, labeledXi; Yi; i = 1; 2, apply force
to an individual side of the table through a shaft, attached at a distancer from the center of the table.
Shafts are stiff along the driving direction and compliant perpendicularly. In the figure,Y1’s shaft
is shown stiff alongy and compliantx. (b) A more space-efficient arrangement of motors is shown,
along with side views of the table; these show weight-supporting flexible rods under the table (also
present in -a-).

Namely, the table will tend to rotate clockwise if motors at opposite sides push (or pull)in tandem,

while the table will tend to translate if a given motor pushes while the one on the opposite side pulls

(or vice versa). This can be expressed by the following set of equations which relates applied forces

to the resultants along the plate’s 3 dof’s:
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fx = X1 �X2

fy = Y1 � Y2

�� = r[(Y1 + Y2)� (X1 +X2)] (5.8)

wherer denotes the table’s center distance to the actuation point on each side. In Fig-

ure 5.4(b), a more space efficient (and kinematically equivalent) arrangement of motors and table is

shown, in which the position (and force signs) ofX2 andY2 are changed.

We will model the off-axis shaft compliances as linear damped springs. If input forces are

well above resonance, inertial forces dominate both spring and damping forces, so that the velocity

along each axis is simply the time integral of the applied external force. So let each motor apply a

force of the type:

f(t) = cos(wt)� sin(2wt) (5.9)

scaled by chosen constantsX1;X2; Y1; Y2. Then, because the map in (5.8) is linear, the

force applied to the table along each of its dofs will also be of this form, so that the resulting

integrated velocity will be as desired:

2
6666664

_x

_y

_�

3
7777775
(t) =

2
6666664

1
M fx

1
M fy

r
I ��

3
7777775

1

w
[sin(wt) +

1

2
cos(2wt)] (5.10)

Using Equations 5.7 and 5.8, we can chooseX1;X2; Y1; Y2 to place C at a desired spot

and scale the angular velocity about it.
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5.2.2 Signal Generation and COR Visualization

We usevoice coils [3] for each linear actuator. These devices respond with force along

the driving axis proportionally to the current flowing through them. We built a dedicated circuit to

generate the motor waveforms as defined in Equation 5.9; a block diagram of the signal-generation

hardware is shown in Figure 5.5. Two microcontrollers [27] running appropriate firmware produce

a total of four independent analog signals; each signal is power amplified and sent to a motor. A host

PC communicates with the board via the parallel port. The microcontroller firmware allows for the

flexible calibration of relative phase and amplitude between the 1st and 2nd harmonic components in

Equation 5.9, and for the turning on and off of signals sent to motors, with chosen scaling amplitudes

X1,X2, Y1, andY2.

Instead of calculatingC based on a set of known dynamic parameters (input forces, plate

mass and geometry, motors’ force constants), we took a reverse-engineering approach. We installed

accelerometers [1] at two opposite corners of the plate (actually glued underneath). Each sensor

provides two analog measurements corresponding to the acceleration at two perpendicular axes.

In Section 5.4.1 we show that by knowing the rigid velocitiesv1 andv2 at two distinct

pointsp1 andp2 of a moving plate (e.g., two opposite corners,p1 = �p2) we can determine the

plate’s instantaneous center of rotation and angular velocity:

jwj =
jjv2 � v1jj
2jjr1jj (5.11)

C =
(v1 + v2)

?

2w
(5.12)

There are two problems with the above: (1) the sensors recover acceleration, and not

velocity; (2) sensor data is noisy. To address (1) we simply state that under sinusoidal excitation,
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the RMS velocity will be proportional to the RMS acceleration, independently for the 1st and 2nd

harmonic components. Speaking of RMS, this suggests a solution for (2), i.e., rather than computing

C andw based on instantaneous acceleration readings we do that based on average amplitudes over

a large number of sampled cycles.

Figure 5.5 shows the 11-bit A/D converter used to sample the four accelerometer signals

simultaneously. This is currently done at a rate of 5 KHz. Samples are passed to the PC via the

parallel port in real-time. One such sequence of samples is shown in Figure 5.7(a). Since the force

frequencyw is known, the least-squares amplitude and phase of the signal are recovered by dotting

the sensor samples with the four orthogonal functionscos(wt), sin(wt), cos(2wt) and sin(2wt)

(essentially a DFT [17]), yielding coefficientsc1, s1, c2, s2, i.e., we fit the following “model”

accelerationa(t) to our data:

a(t) = c1 cos(wt) + s1 sin(wt)

+ c2 cos(2wt) + s2 sin(2wt) (5.13)

which we express succinctly asa(t) = [c1; s1; c2; s2]. A well-registered least-squares fit

to the data in Figure 5.7(a) is shown in Figure 5.7(b). To visualize the least squares-fit velocity

waveform, we simply integrate Equation 5.13, obtaining an identical waveform expressed as:

v(t) =
1

w
[�s1; c1;�s2

2
;
c2
2
] (5.14)

This is used to generate the velocity waveform shown in Figure 5.13. Real-time visualiza-

tion of v(t) allows the user to fine tune relative phase and amplitude parameters between first and

second harmonic to compensate for frequency dependent phase and amplitude response (ideally,
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phase is flat and amplitude roll-off is as1=w whenw >> w0, however a bit of pre-compensation is

always needed).

The least-squares fit recover unsigned amplitudes to the sinusoidal accelerations along

each of the four probed axes. To assign directions to each of these vectors we need to consider

the phase relationship between the first and second harmonic of each acceleration signal. For a 1d

acceleration profile of the formcos(t)+cos(2t+�), the average force will be positive iff� 2 (0; �)

[37]. In Section 5.4.2, we shown that this corresponds to the following expression in terms of the

four free parameters in Equation 5.13:

sgn[force] = sgn[2s1c1c2 + s2(s
2
1 � c21)] (5.15)

5.2.3 Synthesizing Scaled Displacement Fields

Given anrmin and other dynamic parameters (such as motor power and coefficient of

friction), w(t)’s amplitude and frequency can be chosen so that the part’s velocity�p can be consid-

ered constant within one oscillation cycle. In that Section it also shown that if the part’s velocity is

negligible compared to the peak tangential velocity atPi, call it �max, the average force�f1d = �f0 is

constant and independent of�p. In particular, as�p grows, the force applied to it by the oscillating

plate decreases, in linear viscous fashion. At�p =
2
3�max, �f1d = 0.

Consider a surface rotating periodically about pointC with angular velocityw(t) as in

Equation 5.6. ConsiderN partsPi lying on S at rest. With enough motor power the amplitude

of w(t) can be made high enough so that parts velocities�p are negligible compared to the peak

tangential velocity at the part’s locations, call it�max.Under sliding Coulomb friction, parts will
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Figure 5.5: Block diagram of the signal generation and acceleration acquisition hardware: two
microcontrollers (picA and picB) generate four independent PWM signals. These are low-pass
filtered and power-amplified, and then applied to each motor. Two 2-axis accelerometers are glued
under opposite corners of the table. The four acceleration readings are pre-amplified and input
to a 4-channel, 11-bit A/D, whose sampling is controlled by one of the PICs. The PC can send
commands and/or read samples from the A/D via a parallel port interface.

experience and average tangential force per cycle of�f1d = �f0, as mentioned above.

To simplify control, we make the following key assumptions: (i) A desired displacement

field will be generated by a finite-duration pulse. (ii) At the beginning of the pulse all parts will

have zero velocity. To ensure this, each pulse will be preceded by a sufficiently long rest phase. (iii)

By keeping all parts’ velocities negligible with respect to the peak ofw(t)�rmin, wherermin =

minifPi � Cg, all parts will accelerate by the exact same amount, and that amount will be linearly

proportional to the pulse’s length.

To avoid impulse-response ringing, we will initiate (resp. terminate) the pulse with smooth
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Figure 5.6: Photograph of the signal-generation and real-time acceleration acquisition hardware.

attack (resp. decay) phases, of identical duration. The pulse’s middle part, called itssustain phase

will be of a much higher durationS. These concepts are illustrated in Figure 5.9. The final desired

displacementd for all partsPi will be proportional toS2, i.e.:

S /
p
d

The signal-generation hardware allows for the easy tuning of attack, decay and sustain

durations shaping of the output waveform. Oscilloscope photographs showing actual output are

reproduced in Figure 5.8.
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(a)

(b)

(c)

Figure 5.7: The waveform fitting process: (a) Samples coming from one sensed axis; (b) Least-
squares fit (shown solid) and original samples (shown dotted); (c) Least-squares fit (shown dotted)
and closed-form integral, i.e., the fitted velocity signal (shown solid).

5.2.4 Tracking Parts

A camera is placed a few feet above the table pointing downward at the latter’s center.

The ground is black, the table is white and the parts are pennies painted black.

The first step is to determine the table’s rotation and translation relative to the image. This

is a one-time operation, done prior to the task, given that the table itself moves negligibly when it

vibrates. We compute the table’s edge map using standard procedures [41]. Each edge in the image



79

(a)

(b)

(c)

(d)

Figure 5.8: Waveform shaping: (a) four cycles of the original velocity waveformsin(t)+cos(2t)=2;
(b) the attack/sustain/decay envelope; (c) the shaped waveform, i.e., -a- multiplied by -b-; (d) the
envelope superimposed on the shaped wave, showing registration. These pictures were taken from
an actual oscilloscope (the sweeping rate for -a is four times faster than for the rest).

is then hashed by its distance to the image’s center and angle onto a 2d Hough-vote array [41].

Edges making up the table’s four sides will cluster at four locations on the Hough-array. Each of

the Hough peaks gives rise to a line. Sorting these lines by angle and then intersecting consecutive

line pairs, we obtain the 4 corners of the table and its coordinate frame.

The second step is to locate the coins’ initial locations. Having previously determined the

table’s sides (and their lengths as they appear in the image) we compute a circular kernel (a solid

disk) with a pixel-radius proportional to the penny/table-side ratio known a priori. This kernel is

convolved with all points in the image interior to the table outline, computed above. The convolved
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Figure 5.9: Emulating rotation intensity through pulse duration: two shaped pulses are shown. The
pulse is represented by the outline of a normalized tangential velocity, covering [�1:5; 0:75] along
y (i.e., the range of cos(t)� cos(2t)=2). Each pulse contains 10s-100s of cycles of the basic driving
waveform (not drawn). Each pulse starts (resp. finishes) with a smooth attack (resp. decay) phase
lasting A (resp. D = A) seconds. The first (resp. second) pulse sustain duration is S1 (resp. S2).
For convenient visualization, S2 = 2S1. The part’s velocity is shown in plotted with a thicker line.
Pulses are preceded and followed by a rest phase which ensures part velocity is null at the beginning
of each pulse. Though not drawn to scale, assume the attack/decay phases are very short compared
to the sustain; in this fashion, part speed will increase steadily so that at the end of the pulse, its
value (shown as Æ1 and Æ2) is proportional to S1, S2, i.e., part displacement will be proportional to
Æ2i . To ensure this, the dynamic parameters must be tuned so that Æi is negligible compared to the
peak of the envelope.

image will contain peaks corresponding to the center of each coin.

Determining coins’ initial locations is done once prior to the task. The actual tracking

of coins is a much cheaper operation. Once they start moving, once must simply convolve the

aforementioned disk-shaped kernel over a 1 or 2 pixel neighborhood of a part’s current location; the

peak in the convolved neighborhood determines the coin’s new position.
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Figure 5.10: Image processing stages: (a) the original image, as seen from the camera overlooking
the table. Four pennies have been placed on the table; (b) after edge detection; (c) Hough-vote
space, showing the four peaks corresponding to the table’s 4 long sides; (d) image convolved with a
penny-sized disk, showing peaks at coins’ centers; (e) final result showing detected features (table
and coin outlines).

5.2.5 The Control Loop

The sequence of steps suggested in Section 5.1.1 is slightly modified to incorporate the

practical solutions described in this Section:

� Use vision to obtain parts’ coordinates Pi

� From task trajectories, specify new motion subgoals �P i

� Given a set of M feasible COR’s, solve for rotation scaling dj ; j = 1: : :M .

� Actuate table so it rotates
p
dj seconds about Cj (using a shaped pulse), sequentially, for j = 1: : :M .
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� Compare with desired steps (report error), repeat

5.3 Experiments

5.3.1 COR Steering and Calibration

Given the actuation kinematics in Figure 5.4(a), Equations 5.10 and 5.7 give rise to the

following proportionality laws:

w / (Y1 + Y2)� (X1 +X2)

cx / (Y2 � Y1)=w

cy / (X1 �X2)=w (5.16)

We used the signal generation hardware to test the table’s vibration under six distinct

choices for amplitudes Xi; Yi; i = 1; 2, as shown in Table 5.1. As is apparent, in all combinations

the w control (Y1 + Y2)� (X1 +X2) is kept constant. By varying the other components, the idea

is to “steer” the COR away from its original position in fixed steps along the following axes: +x,

+y, �x, +y, and �x. A program was written which performs real-time acquisition of acceleration

data and the simultaneous computation/visualization of the COR’s. Figure 5.11 shows the CORs

placement for each of the amplitude combinations sent to the motors; as shown, the COR does

get placed at the intended locations. The actual coordinates for C calculated in real-time from the

accelerometers’ outputs are shown in the last two columns of Table 5.1.

With this machinery, one can tweak waveform amplitudes input to the four motors until

the COR is steered to a convenient location. Repeating this process for enough distinct locations
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X1 X2 Y1 Y2 Y1 � Y2 X1 �X2 cx cy �cx �cy
(a) -128 -128 128 128 0 0 �:22 :02
(b) -256 0 128 128 �256 0 2:92 :04 3:14 :02
(c) -256 0 0 256 �256 256 2:72 2:52 �:20 2:48
(d) -128 -128 0 256 0 256 �:18 2:66 �2:90 :14
(e) -128 -128 -128 384 0 512 �:14 5:34 :02 2:68
(f) 0 -256 -128 384 256 512 �3:25 5:54 �3:11 :2

Table 5.1: Motor amplitudes Xi; Yi; i = 1; 2 as they were passed to the hardware waveform genera-
tor. Real-time accelerometer output was used to compute the coordinates cx and cy of the associated
center of rotation, displayed in inches with respect to the table’s center (the table is an 8”x8” square).
Notice that the last two CORs lie outside the table’s surface. The �cx;y show the COR displace-
ment with respect to its location given the controls in the preceding row. As seen, the device is fairly
“balanced” on both axis, responding linearly to changes in the control as predicted by Equation 5.16.

and recording the required amplitudes gives rise to a “COR library” which can then be used by our

parallel manipulation algorithm.

5.3.2 One-Part Trajectory-Following

In order to test the integrity of key parts of the system, namely, the image-processing/part

tracking, the interfacing with the signal generation hardware, and the mechanical functionality of

our prototype, we designed a simple automated, visually-servoed task involving a single part (a

penny painted black). The experimental setup is shown in Figure 5.12.

(a) The penny is placed at a random location on the table. (b) The image processing

system locates it. (c) The penny is brought to the exact center of the table via translations along x

and y. (d) The penny will traverse clockwise and indefinitely, the four branches of an imaginary

“plus” sign laid over the table. It starts out traversing in the �x direction until it hits the table’s

edge, at which point it switches directions and returns to the center. After that, the +y branch is

explored, and so forth. For this simple task, the system performed robustly and consistently. Eight

consecutive snapshots of this experiment, are shown in Figure 5.13.
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5.4 Useful Calculations

5.4.1 COR Calculation

Assume the table is a rigid square with center O. Assume the instantaneous velocities v1

and v2 at points r1 and r2 are known. These quantities are illustrated in Figure 5.14. The goal is

to compute the table’s instantaneous center of rotation c and the associated instantaneous angular

velocity w measured about c. We can write:

v1 = w(r1 � c)? (5.17)

v2 = w(r2 � c)? (5.18)

Taking the difference (5.17)-(5.18) eliminates c, i.e.:

v2 � v1 = w(r2 � r1)
? = �2wr1 (5.19)

Which implies:

jwj =
jjv2 � v1jj
2jjr1jj (5.20)

sgn(w) = sgn[(v2 � v1)� r1]

Taking the sum (5.17)+(5.18) yields:

v1 + v2 = w(r1 + r2)
? � 2wc?

Since r1 + r2 vanishes in the above, we proceed with:
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(v1 + v2)
? = 2wc

c =
(v1 + v2)

?

2w
(5.21)

With w computed as in (5.20). Equations 5.20 and 5.21 are then the final results. An

alternative method to compute c is to find the intersection of infinite lines L1, L2 passing thru r1,

r2, which are perpendicular to v1, v2, respectively (see Figure 5.14). This method is inconvenient

since the intersection is ill-defined with nearly parallel v1 and v2.

5.4.2 Positive Force Test

Assume plate’s acceleration relative to part is of the form:

ap(t) = cos(t) + 2b cos(2t+ �) (5.22)

In [37] we show that under the above plate motion, the part’s equilibrium velocity �eq

is b sin(�), with constant jbj < 1=2. Though a closed-form expression was not derived for the

average force applied to the part per cycle (assuming zero part velocity) in terms of b and �, this

implies that the sign of the average force is given by sgn[b sin(�)]. An alternative representation

for Equation 5.22 is:
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ap(t) = c1 cos(t) + s1 sin(t) +

c2 cos(2t) + s2 sin(2t) (5.23)

= m1 cos(t� �1) +m2 cos(2t� �2) (5.24)

(mi; �i) = (
q
c2i + s2i ; tan�1

si
ci
); i = 1; 2

Let t0 = t� �1, then Equation 5.24 can be rewritten as:

ap(t) = m1[cos(t
0) +

m2

m1
cos(2t0 + 2�1 � �2)] (5.25)

Modulo the m1 scaling factor, Equation 5.25 is in the form of Equation 5.22, with � =

2�1��2 and b = m2

2m1
> 0. So the force will be positive when sin(2�1��2) > 0, i.e., 2�1��2 2

(0; �). Define complex numbers zi = ci + jsi; i = 1; 2. Then 2�1 and �2 are the angles under

z21 = c21 � s21 + 2jc1s1 and z2, respectively. So the previous condition is equivalent to stating

z21 � z2 > 0, or equivalently:

2s1c1c2 + s2(s
2
1 � c21) > 0

5.4.3 Table Dynamics

Let each actuation degree-of-freedom of the table be, under small displacements, modeled

as a forced mass-damped-spring system, obeying the following linear differential equation [14]:

fext = m�q + b _q + kq (5.26)
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Where “q” represents the axis under question (x, y, or �), and m; b; k are the mass (mo-

ment of inertia for �), damping, and coefficient of friction along the appropriate axis. The resonance

frequency w0 of such a system is given by [14]:

w0
�=
s
k

m
�
�

b

2m

�2

(5.27)

In general, each axis will have distinct w0’s, i.e., w0;x 6=w0;y 6=w0;�, so define:

w0;max = maxfw0;x;w0;y;w0;�g

For fext = sin(wt), the solution to Equation 5.26 is q = �(w) sin(wt + �) [14], which

implies w and �w2 coefficients in the _q and �q derivatives, respectively. So sufficiently above the

system’s highest resonance, i.e., w >> w0;max, the inertial term in Equation 5.26 dominates over

the damped-spring forces, and fext �= m�q, i.e., the velocity along that d.o.f. is proportional to the

integral of the external force:

w � w0;max ) _q(t) =
1

m

Z
fext(t) dt

5.4.4 Concatenation of Infinitesimal Flows

Let ~U and ~V denote two independent vector fields over Rn and q be a discrete point in

that space, q 2 Rn. Starting at q, consider an �-long flow along ~U followed by an equidistant flow

along ~V ; call the resulting point q0. Proceed from the latter in � steps along �~U , and �~V ; call the

resulting point q00. This process in illustrated in Figure 5.15. Equivalently:
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q0 = ~V� Æ ~U� Æ q

q00 = ~V�� Æ ~U�� Æ q0

A straightforward Taylor expansion of the above [32] yields:

q0 = q + �(U + V ) +
�2

2
[[U; V ]] +O(�3) (5.28)

q00 = q + �2[U; V ] +O(�3) (5.29)

Where:

[[U; V ]] = V 0:(U + V ) + (U + V )0:U (5.30)

[U; V ] = V 0:U � U 0:V

And U 0 is the matrix [@Ui=@qj ] (similarly for V 0). The reader will recognize [U; V ] as the Lie-

Bracket [32] of the field pair, which arises when the flow is loop-like. In the half-loop case, the

non-linear term [[U; V ]] has no symmetries (compare: [U; V ] = �[V;U ]), and, as evidenced by

Equation 5.30, can grow out of bounds near high-derivative regions of U and V . For fields as in

Equation 5.1, this corresponds to being close to the center of rotation. In summary, the second-order

term in Equation 5.28 will be negligible if (i) � is small and (ii) the entries in V0 and (U + V )0 are

evaluated not too close to the centers of rotation of U and V .
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5.5 Summary

We have described a minimalist approach to parallel part manipulation which is dual to

the standard array-based device in distributed manipulation in the sense that a small (indeed a single)

number of actuators is used to manipulate a large number of parts. This is achieved through a more

complex manipulation scheme. Additionally, our algorithm requires that parts’ positions be known,

precluding sensorless manipulation, a direction which is of much interest in array-based distributed

manipulators.

Implementation of the device is underway; important hurdles already cleared include the

design, mechanical tuning, and control of the actuation kinematics, the ability to flexibly generate

signals to the actuators, visualization and calibration of centers-of-rotation, and part localization

through image processing.
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Figure 5.11: Steering the COR with the 6 amplitude combinations shown in Table 5.1. The table is
drawn as an outline; the accelerometers are drawn centered at their actual locations near the lower-
left and upper-right corners of the table. The actual magnitude of acceleration measured by each
two-axis accelerometer is shown along with the perpendicular (the COR is supposed to fall at the
intersection of these). The actual computed COR is shown as a black dot. Snapshots should be read
left-to-right, top-to-bottom; in the first four, the COR lies inside the table’s surface; in the remaining
two, it falls outside.
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camera

device

Figure 5.12: Experimental Setup for the 1-coin experiment: the computer, shaker table, and camera
are visible.

Figure 5.13: Eight consecutive snapshots (to be read left-to-right, top-to-bottom) of a simple
visually-servoed trajectory-following task involving a single part (black penny). The plate is vi-
brated along x and y to steer the coin along the branches of an imaginary “plus” sign centered on
the board. It does so in clockwise order, starting with the �y branch. For each branch, the coin
advances from the table’s center to its edge at which point visual-servoing commands the motors to
reverse feeding direction.
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Figure 5.14: The shaker table is shown with two accelerometers placed at r1 and r2, with r2 = �r1.
The instantaneous velocities at these points are v1 and v2, respectively. Lines L1 and L2 pass
through r1 and r2, and are perpendicular to v1 and v2, respectively. The instantaneous center of
rotation C and angular velocity w are also shown. Notice that C will lie at L1\L2.
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Figure 5.15: Concatenation of infinitesimal flows: The initial state q flows � units along ~U , and ~V ,
leading to q0. The latter then flows � units along �~U , and ~V , yielding q00. When � is small, the
deviation q00 � q is proportional to [~U; ~V ]�2.
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Chapter 6

Jets as a Local Motion Primitive

In this chapter we present a culmination of our research on vibrations-based planar part

manipulation, centered on the Universal Planar Manipulator (UPM). The UPM is shown with some

generic objects on its surface on Figure 6.1.

Figure 6.1: The Universal Planar Manipulator (UPM): generic objects placed on a flat plate can be
manipulated independently via vibrations/friction.

The most interesting property of the UPM is its minimalism: despite its simple construc-

tion, the UPM can manipulate a large number of parts in parallel. Namely, given known locations

of N parts, and N independent displacements desired for each part, a closed, rigid motion of the

plate can be computed which, once executed, displaces all parts as desired. This result owes to
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the fact that, under Coulomb friction, distinct rigid rotations of the plate produce part displacement

fields which are linearly-independent bases of the space of all possible part displacements [38, 7].

Namely, given desired displacements, a sum of (scaled) rigid plate rotations exists which produce

them.

One problem is that a rigid body cannot execute a motion in the space of summed rigid

rotations. Fortunately, the sum space can be approximated by a sequence of M�2N rotations about

known centers Cj , j = 1; 2; � � � ;M , provided each rotation displaces parts by a small amount.

This was exploited in our original method [38]: given part positions and desired displacements, the

system solved for rotation durations kj , a process which required inverting a matrix. Though linearly

independent, rotations are not orthogonal: each rotation displaces all parts, resulting in a cross-talk

matrix with much off-diagonal energy. The end result is that matrix inversion is ill-conditioned, so

computed durations are long, and part displacements are slow and noisy. This was partly addressed

by adding redundancy to the linear system, i.e., more rotations per parallel update, M�2N . This

slows down execution and does not rule out ill-conditioning.

The main contribution on this paper is to present a new motion primitive – called the

jet – which diagonalizes the inversion process, so that the solving step is robust and execution is

significantly sped up. A jet is a force field “ focused” on a single part, which can be told do move

while keeping all others still. Parallel manipulation then reduces to applying a jet to each part in

sequence. Because the jet’s action is local to a part, execution time is proportional to the number of

parts being moved, irrespective of how many currently sit on the plate. In the previous method, N

parts required at least 2N rotations, even if just a single part was being displaced.

The jet idea is supported by a complete characterization of the feeding forces produced
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when plate motion is a sum of two sinusoids. We derive specific conditions under which two si-

nusoids produce maximal or no feeding forces, based purely on their relative phase and frequency.

With this theory, we are able to pick the components of plate motion which generate optimally-

focused (as-local-as-possible) jets.

This Chapter is organized as follows: In Section 6.1 we describe the jet, our new local

force field. In Section 6.2, the main parts of the UPM prototype are explained. Experiments using

jet fields are presented in Section 6.3. In Section 6.4 we present a characterization of feeding forces

with two harmonics. A Summary is presented in Section 6.5.

6.1 The Jet as a Local Force Field

A new closed motion of S is described which integrates to a local force field called a jet.

Local in the sense that it is only non-zero in the vicinity of a single part, and oriented along the

part’s desired motion.

Let the xy plane coincide with the horizontal plate S. S executes a closed motion lasting

T seconds. “Closed” in the sense that at the end of the motion (time T ) the surface returns to its

initial position. Let v(P; t) denote the instantaneous velocity at a point P in S. Consider a part

of mass m lying at point P on S. Assume the part’s speed is negligible with respect to v(P; t).

Assume plate motion is such that friction is always of the sliding type [35]. The part will perceive

an instantaneous frictional force f(P; t) of fixed value �mg in the direction of v(P; t), where �; g

are the constant of sliding friction and the acceleration of gravity, respectively:

f(P; t) = �mg
v(P; t)

jjv(P; t)jj (6.1)

Note: if v = �x(t) is along a single direction, e.g., x, the above reduces to �mg sgn[�x(t)]. From
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Equation (6.1) obtain the frictional force�f applied to the part averaged over the entire motion:

�f(P) =
�mg

T

Z T

0

v(P; t)

jjv(P; t)jjdt (6.2)

Consider a 1d translational vibration v(t) of S along d = (dx; dy), the feeding direction. �f will be

non-zero if v(t) is time-asymmetric, i.e., its positive and negative (along d) portions have different

durations [37]. A low-bandwidth v(t) is desirable since it avoids resonances in the mechanical sys-

tem. Non-zero �f requires at least two sinusoids, since a single sine is time-symmetric. Corollary 1

in Section 6.4 states that the velocity profile:

v(t) = d[cos(t)� cos(2t)] (6.3)

delivers the maximum possible force �mg=3 in the feeding direction over all choices of frequencies

and phases for two sinusoids. To the above 1d motion, considering superimposing a sinusoidal

rotation about a point C, namely:

v(P; t) = d[cos(t)� cos(2t)] +
2jdj
�

sin

�
2

3
t

�
(P�C)? (6.4)

Where � is a scaling constant for the rotation component. This motion is closed with period T = 6�.

Near C the rotation component vanishes, and Equation (6.4) reduces to Equation (6.3). At large

radii from C, the rotation component (i.e., tangential velocities) dominates. Since this signal is

time-symmetric, it will produce zero feeding forces. At distance � from C, the rotational and

translational waveforms have equal peak values. So parameter � can be set to control the rate of

decay from maximum feeding force at C to zero at infinity. The larger the �, the more the field’s

active zone is “ focused” (i.e., concentrated) on C.

We chose sin(2t=3) for the rotational component so as to produce zero feeding forces with

either component of Equation (6.3). This helps in creating “destructive interference” (in the feeding
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force sense) anywhere but in the vicinity of C. We now refer to the results derived in Section 6.4.

First, sin(2t=3) is non-feeding with cos(2t) because their frequencies are at a 1:3 ratio. Because

both these numbers are odd,�f = 0, Lemma 1. Second, sin(2t=3) is non-feeding with cos(t) because

though their frequencies are at a 2:3 ratio (this is potentially feeding, Lemma 3), their phases are

such that both waveforms have at least one coinciding root (at t = 3�=2), so�f = 0, Corollary 2.

Other possible choices for the rotation component are sin(t) + cos(t), sin(2t), and so on

to higher frequencies. We opted for going below the feeding fundamental since for a given motor

power, higher peak rotational velocities (/ �) are feasible, yielding better-focused fields.

By plugging Equation (6.4) into the average force field integral, Equation (6.2), we obtain

an average force field which is “ local” to C, as shown in Figure 6.2. We call this primitive a “ jet” ,

since it resembles a field of the same name in fluid mechanics. Under a jet field, only a part at C

will experience any feeding force at all.

A straightforward step is to compute controls (forces and torques) which will position

and orient the jet at will. Parallel manipulation then reduces to applying jets to individual parts, in

round-robin fashion: for each part (i) track coin positions Pi; i = 1; 2; � � � ; N using vision; (ii) get

desired displacements di from task; (iii) apply a jet field focused on Pi and oriented along di.

Because local fields are nearly orthogonal (little cross talk), the solving step is direct (no

matrix inversion required). While parts away from the jet’s center do flow a bit (the field is small but

non-zero there), this can be easily corrected with vision feedback. Jet-based manipulation is also

much more scalable: if a subgroup of N0 parts needs to be manipulated within a group of N parts

only N0�N jets are needed. In the old method, this required at least 2N rotations [38].
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Figure 6.2: The jet force field: a feeding velocity ŷ[cos(t) � cos(2t)] superimposed to a rotation
sin(2t=3)=� about the origin. Frictional forces are represented by scaled arrows. The dotted circle
– a measure of the jet’s focus – has radius 2�.

6.2 UPM Details

A block diagram of our prototype appears in Figure 6.3. Its various parts are explained

next.

The plate itself is a 16”x16” tile of honeycomb material. Honeycomb is both cheap and

has a very large stiffness-by-density ratio [16], i.e., vertical oscillations of the plate are kept to a

minimum. The plate is constrained to move in its own plane by four vertical nylon rods supporting

each of the plate’s corners. This bearingless, flexure system is ideal since plate oscillations are of

just a few millimeters.

Four voice coils (delivering up to 50 lbf each) actuate the plate in two differential pairs,

along x and y. Each can apply either a force or a torque to the plate, depending on whether input

signals are in- or out-of-phase, respectively.
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For calibration purposes, two 2-axis accelerometers are installed at opposite corners of the

plate. Prior to an experiment, the plate is run through a battery of standard motions; accelerometer

data is used to compensate for distortions.

A camera is mounted over the plate and feeds color NTSC back to the controlling PC.

This is used to locate the table’s edges and track moving parts (“visual” feedback).

An interface board containing two micro-controller chips manages both the sampling of

accelerometer signals and the generation of four phase-precise analog signals to the motors. A

consumer-grade audio amplifier boosts the four analog signals to power levels required by each

motor. To synthesize a jet, the PC downloads appropriate waveform parameters to the interface

board. The PC commands the board to issue a pulse (a few cycles) of the four analog waveforms,

causing the plate to vibrate and the parts to displace. Parts’ positions are re-tracked, and the process

repeats.

The jet waveform, Equation (6.4), inject three frequencies into the plate, call them f , 2f ,

and 2f=3. We found that f = 35Hz avoided any natural resonances of the system, while allowing

for large peak velocities with the existing motors (large peak velocities promote both strong feeding

forces and good jet focusing).

6.3 Experiments

Parallel manipulation under the new method is demonstrated in two experiments. First,

we attempt to move three pennies along the same bowtie curve, Figure 6.4. In this 6-dof system,

pennies have to reorganize themselves in a clearly non-rigid way as they traverse the curve. The

controller ensures pennies remain equidistant from each other as they move along the curve. For
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Figure 6.3: Block diagram of the UPM. Three parts (dark disks) are shown on the surface of the
plate. The plate is actuated by four external voice coils (linear motors), organized in pairsX1X2 and
Y1Y2. Two 2-axis accelerometers acc1 and acc2 are installed at opposite corners of the plate. A PC
is connected to an interface board via a parallel port. The PC passes to the board motion parameters
(phases, amplitudes, frequencies) for four independent analog signals. The board generates four
signals with phase-precision. The signals are amplified by an audio amplifier and then fed to the
four motors. The accelerometer signals (four in total) are sampled at the interface board and passed
back to the PC for calibration purposes.

each update of the three coins, the system applies three jets, each centered at a specific coin. To

speed up execution, a jet is executed in parallel with part tracking and motion computation for the

next part (jet execution is the bottleneck). Snapshots of the experiment are shown in Figure 6.5

A second experiment involves the sorting of 8 plastic poker chips (a 16-dof system) based

on color, Figure 6.6. Light and dark chips need to go to opposite sides of the UPM. An automatic

labeling of part color is done by the vision system. The control loops involves applying jets to each

individual part in the appropriate direction, round-robin. A better approach would include motion

planning (e.g., using potential fields) but here the controller simply pushes chips to the appropriate
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side. Videos of these experiments can be found on the web at: www.cs.berkeley.edu/�dreznik/UPM2000

Manipulation with the UPM is not restricted to disk-shaped objects. As shown in Fig-

ure 6.1, this device can manipulate generic objects such as tools, bottles, etc. Because force scales

with weight, objects with different weights will move at similar speeds, provided they have similar

friction coefficients with the plate.

Figure 6.4: Bowtie experiment as viewed from the overhead camera. Three pennies and the intended
bowtie curve are shown.

6.4 Part Feeding with two Sinusoids

In this Section, we characterize the frictional forces produced by plate motion made up

to two sinusoids. The less mathematically inclined should skip the details and simply review the

lemmas, theorem, and corollaries.

Consider a flat horizontal surface S; let the xy-plane lie on its surface, with the z-axis

pointing upwards, opposite to gravity. Consider a rigid vibration of S along x, with velocity �(t) of

the form:

�(t) = sin(f1t) + b sin[f2(t� ')] (6.5)
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Figure 6.5: Snapshots of motion along the bowtie curve. Each snapshot combines 3 consecutive
frames in “stop motion” . Arrows label part motion across frames. Parts complete a loop around the
bowtie in about a minute.

Parameters b and ' are relative amplitude and phase between the components. t and ' are given in

radians. We consider the case of f2=f1 rational, f2�f1. Let n2=n1 be the reduced fractional repre-

sentation of f2=f1 in terms of two relatively prime integers [28] n2; n1, with n2�n1, gcd(n1; n2) =

1. Without loss of generality, we normalize �(t)’s period to 2� by writing:

�(t) = sin(n1t) + b sin[n2(t� ')] (6.6)

Consider a part P lying on S with negligible velocity �p(t)�=0, i.e., S’s velocity relative to P is

simply �(t). We use Coulomb friction in sliding mode [35] as our model: the force S applied to
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P is (i) in the direction of �(t), and (ii) of constant magnitude �mg, where �;m; g symbolize the

frictional constant, the part’s mass, and the acceleration of gravity, respectively. Then the average

frictional force �f applied to P per cycle is:

�f =
�mg

2�

Z 2�

0
sgn[�(t)]dt (6.7)

where sgn[u] is the sign function, defined as 1; u�0, and �1 otherwise.

Lemma 1. If both n1 and n2 are odd then �f = 0, for any choice of b; '.

Proof. A sinewave has the symmetry sin(nt) = � sin[n(t��)]; 8t, provided n is odd. When both

n1 and n2 are odd, each of Equation (6.6)’s harmonics will display this type of symmetry, and thus

�(t) = ��(t� �), i.e., sgn[�(t)] integrates to zero in [0; 2�).

Lemma 2. For any choice of n1; n2; b, a phase ' exists which causes �f = 0, for any b.

Proof. Choose ' = 0: �(t) is a sum of two pure sines, i.e., it is an odd function with symmetry

�(t) = ��(t). So Equation (6.7) integrates to zero.

Lemma 3. If one of n1; n2 is even1 then �f 6=0 for some b; '.

Proof. First we choose a phase which gives feeding, namely we adjust ' so that the positive peak of

the n1 sinusoid aligns with the negative peak of n2, allowing �(t) to be written from Equation (6.6)

as:

�(t) = cos(n1t)� b cos(n2t) (6.8)

Now rewrite Equation (6.8) as the following product (using standard trig identities):

�(t) = 2 sin

�
�t

2

�
sin

�
�t

2

�
(6.9)

1They can’ t both be even since they’re relatively prime.
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where � = n2 � n1 and � = n2 + n1. Because exactly one of n1; n2 is even, both �; � are odd.

It is also true that �; � are relatively prime since gcd(�; �) = gcd(� � �; �) = gcd(2n2; �) =

gcd(�; 2n1). Therefore gcd(�; �) is also a divisor of 2n2 and 2n1 and therefore of 2 gcd(n1; n2) =

2. But it can’t be two since � and � are odd. Thus gcd(�; �) = 1.

Since � and � are relatively prime, their least common multiple – the lcm – is given by

their product:

lcm(�; �) = �� = n22 � n21 (6.10)

�(t) has a root whenever either of Equation 6.9’s factors is zero, i.e., t is a multiple of either

2�=� or 2�=�. Equivalently, the roots of �(t) may only occur at “grid points” tk = 2k�=(��),

k = 0; 1; � � � ; ��. Define open intervals �k = (tk�1; tk), k = 1; 2; � � � ; ��, each of equal length

2�=(��). Within each �k, �(t) has no roots, i.e., it is of constant sign. So the integral in Equa-

tion (6.7) becomes the following discrete sum:

�f =
�mg

��

��X
k=1

sgn[�(�k)] (6.11)

We note the quantity �� is odd, since it is the product of two odd numbers, i.e., Equation (6.11) is

a sum of an odd number of �1’s. An imbalance must exist in this sum, and therefore �f 6=0.

Because �f is a continuous function of b; ', property �f 6=0 holds true within an open neigh-

borhood of b = 1 and the ' chosen to render �(t) of the form of Equation (6.8).

The previous result is illustrated in Figure 6.7 for the case where n1 = 2 and n2 = 5.

The sign imbalance in this example is exactly one �k, which turns out to be the maximum possible

imbalance, explained next.
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Theorem 1. Consider a surface velocity of the form:

�(t) = cos(n1t)� cos[n2(t�  )] (6.12)

where n2 > n1 are relatively prime, and exactly one is even.  = 0 yields the maximum possible

average force �f = �mg=(n22 � n21). In general, �f is a triangular waveform on  , taking the

following form:

�f =
�mg

n22 � n21
4(n1n2 ) (6.13)

where 4(t) is a unit-amplitude, triangular waveform of period 2�:

4(t) =

8>><
>>:

1� 2jtj=�; jtj < �

4(jtj � 2�); otherwise

Proof. First, using trigonometric product formulae, rewrite Equation (6.12) as the product:

�(t) = sin
h�
2
(t�  1)

i
sin

�
�

2
(t�  2)

�
(6.14)

 1 =
n2

n2 � n1
 (6.15)

 2 =
n2

n2 + n1
 (6.16)

where �; � are defined as in Equation (6.9). With the substitution t! t�  1 obtain:

�	(t) = 2h�(t)h�(t�	) (6.17)

where hn(t) stands for sin(nt=2), and 	 =  2 �  1 is obtained from Equations (6.15) and (6.16):

	 =
�2n1n2
n22 � n21

 (6.18)

Equation (6.17) has roots when either factor is zero, i.e., t is a multiple of either 2�=� or 2�=�. Let

a time t for which both factors vanish be called a common root.
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Case 1.	 = 0

By inspection, t = 0 is a common root, and no others may exist in [0; 2�), as this would

imply two non-negative integers k1 < � and k2 < � exist such that 2�k1=� = 2�k2=�, i.e.,

k1� = k2�. Because gcd(�; �) = 1, this is impossible. Notice that 	 = 0 implies  = 0,

Equation (6.18). Lemma 3 tells us that for  = 0, �f 6=0. Call this non-zero average force �f0. In

general, we will use �f	 to denote the average force for the phase 	 defined above.

Case 2.0 < 	 < 2�
��

In this range there are no common roots since none of h�(t � 	)’s roots fall on integral

multiples of 2�=(��). Let rk = 2k�=� denote the kth root of h�(t). Define � intervals �k:

�k = (rk; rk +	) k = 0; 1; � � �� � 1

The �k represent the “sweep” of the zeros of h� as 	 varies. Notice that for t in one of the �k, the

signs of the shifted waveform �	(t) and the unshifted �(t) will be different, while they will be the

same for t outside those intervals.

By a slight abuse of notation, let sgn(�k) denote the sign of �	(t) in the interval �k.

Since �(t) and �	(t) differ exactly in the �k, the net feeding force will be changed by exactly their

contributions. In other words, from equation (6.7), we get that:

Remark 1. The change in feeding force is the sum of changes due to the intervals �k, or:

�f	 = �f0 +
�mg

2�
2	

��1X
k=0

sgn(�k)

where 	 is included because it is the length of every interval �k, and thus equal to the

magnitude of the integral of the sign function over the �k; and 2 is included because each interval
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of length 	 contributes by its own sign, but also by reducing the integral of regions of the opposite

sign.

We complete the proof by showing that only �0 contributes to the sum. The rest cancel

each other in symmetric pairs.

Now h�(t) is symmetric in the interval [0; 2�], i.e., h�(t) = h�(2�� t), and in particular,

h�(rk) = h�(r��k). Furthermore, because h�(t) has no roots within the �k’s, we can infer:

sgn[h�(�k)] = sgn[h�(���k)]; 8k > 0 (6.19)

h�(t) is also symmetric in [0; 2�], but more importantly, its derivative is anti-symmetric. That is,

h0�(t) = �h0�(2� � t). This implies that h�(t)’s zero-crossings at rk and r��k are in opposite

directions, and thus:

sgn[h�(�k)] = � sgn[h�(���k)];8k > 0 (6.20)

Since sgn(�k) = sgn[h�(�k)] sgn[h�(�k)], the last two equations tell us that

sgn[�k] = � sgn[���k];8k > 0 (6.21)

For � ranging from 0; : : : ; � � 1, this means that only �0 is missing a partner of opposite sign. All

the other terms cancel and we have shown that only �0 contributes to the sum in remark 1. Since

sgn[�0] = �1, remark 1 simplifies to:

Remark 2. The change in feeding force with 	 is due entirely to �0, and is equal to:

�f	 = �f0 � �mg

�
	 (6.22)

These concepts are illustrated in figure 6.8.

Case 3.	 = 2�=(��)
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Remark 3. At 	 = 2�=(��) a new common root tk = 2k�=�� is generated at some k, which is

unique in the range t 2 [0; 2�].

To show this let t0 = t��=(2�). So �(t0) has period �� and the roots of h�(t0) [resp.

h�(t
0)] are on integers t = k1�; k1 = 0; 1; � � � ; � [resp. t = k2�; k2 = 0; 1; � � � ; �]. Conveniently,

h�(t�2�=��) becomes h�(t0�1), so we need to show that h�(t0) has a root exactly one unit above

a root of h�(t0), i.e., a unique pair k1; k2 exists such that k1� = k2�+ 1.

Because � and � are co-prime, this is exactly Bézout’s relation [28], which guarantees

that a unique solution pair (k1; k2) exists modulo ��. For example, if � = 3, � = 5, k1 = 2

and k2 = 3 is the unique solution, i.e., the common root corresponding to a unit shift occurs at

t0 = k1� = 10, Figure 6.8.

Remark 4. At 	 = 2�=(��), �	(t) is identical to �(t) up to a sign flip and a shift by the common

root tk, i.e.:

�(2�=��)(t) = ��(t� tk)

This is true because the factors h�(t) and h�(t � 2�=��) are sinusoids. When shifted

by a multiple of their root separation, sinusoids are identical up to a sign change. When a product

of two sinusoids is shifted by a common root, the resulting function is also identical up to a sign

change.

Equation (6.22) tells us that at 	 = 2�=�� , �f	 = �f0 � 2�mg=��, a non-zero change.

Remark 4 tells us that �	(t) = ��(t � tk) and therefore �f	 = � �f0. But since there is a finite

change, we cannot have �f	 = �f0, so we must have �f	 = � �f0. Their difference is 2�mg=��, and

so

�f0 =
�mg

��
=

�mg

n22 � n21
(6.23)



109

We can re-apply this argument to the next interval of 	 2 [2�=(��); 4�=(��)] and we would see a

change in �f in the opposite direction back to the original �f0. Within each interval, �f	 varies linearly

with 	, and so it generates a triangular waveform.

From Equation (6.18) we see that 	 = 2�=(��) = 2�=(n22 � n21) corresponds to ' =

��=(n1n2). Therefore, for ' 2 (0; 2�), �f(') will hit � �f0 2n1n2 times. Because the change in �f

is linear on 	; ', Equation (6.22), and because the peaks alternate, �f(') must also be a triangular

waveform whose period is 2� divided by half the number of peaks, i.e., its period is 2�=(n1n2),

and of amplitude given by the peak value, Equation (6.23).

The shape of �f as a function of ' for various n1; n2 combinations is illustrated in Fig-

ure 6.9.

Corollary 1. The choice n1 = 1, n2 = 2, and  = 0 yields the highest possible �f = �mg=3.

Proof. At  = 0, the triangular waveform is at a peak. We know n2�n1 + 1. Therefore the

denominator of �f is:

n22 � n21 � (n1 + 1)2 � n21 = 2n1 + 1

And this bound is attained (i.e., �f is maximized) when n2 = n1 + 1; the global minimum of

this expression (and the global maximum of �f) occurs when n1 = 1 and n2 = 2, yielding �f =

�mg=3.

In practice, we typically use �(t) = cos(t) � cos(2t)=2 (b = 1=2); though this yields

�f�=0:24�mg (lower than the b = 1 case) it also yields a higher equilibrium velocity.2

Corollary 2. A sum of harmonics n1, n2 (exactly one of which is odd) produces zero (resp. maxi-

mum) feeding force if they have at least one root (resp. peak) aligned.
2The part’s equilibrium velocity �p is such that sgn[�(t)� �p] integrates to zero in 2�.
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Proof. When at least one root (resp. peak) is aligned, the sum waveform is equivalent (modulo a

phase shift and a sign flip) to a sum of pure sines (resp. cosines), which yields zero (resp. maximum)

feeding force, Lemma 2 (resp. Theorem 1).

6.5 Summary

A new local motion primitive called the “ jet” has been described which makes parallel

manipulation with the UPM fast and robust, overcoming many of the shortcomings present in a

previous method. Optimum jet components were chosen based on a complete characterization of

feeding forces when plate motion is a sum of two sinusoids. Due to its mechanical simplicity, the

UPM is an attractive technology for existing industrial applications such as part feeding, sorting,

singulation, etc. The “open face” nature of its workspace suggests interesting applications in novel

areas such as product display, interactive toys, and active desks.
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Figure 6.6: The sorting experiment: eight plastic poker chips (4 dark/blue, and 4 light/red) initially
scattered randomly over the device (top) are sorted by color to opposite sides of the plate. In the last
frame, one of the light chips has fallen the right edge of the table. All chips get sorted in about 30
seconds.
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Figure 6.7: Sign imbalance for the case n1 = 2 and n2 = 5, i.e., � = 3, � = 7. �(t) =
cos(2t) � cos(5t) is plotted as a solid curve over the [0; 2�) interval. Its two factors: sin(32 t), and
sin(72 t), are plotted as dashed curves. lcm(�; �) = �� = 21 yields the number of equal-length
sub-intervals of [0; 2�] which preserve the sign of �(t); in the above, intervals are numbered and
identified with a “+” or “ -” , according to �’s sign in that interval. Because �� is odd, the number
of positive- and negative-sign intervals must differ: above one counts 11 positive vs. 10 negative
intervals. This implies �f 6=0.
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Figure 6.8: Force cancellation for � = 3, and � = 5 (15 constant-sign intervals). The two solid
curves are h3(t) = sin(3t=2) and h5(t) = sin(5t=2). The dashed curve is h5(t � 	), where 	 is
�=(��), i.e., half a basic interval. The �k intervals appear shaded above (resp. below) the x-axis
depending on the sign of h�(t)h�(t�	). Each �k cancels with ���k, with the exception of �0; so
the canceling pairs are (�1; �4), (�2; �3). As 	 approaches a full interval’s length, a new common
root is generated at the end of the 10th interval, marked with a “*” .
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Figure 6.9: Plot of �f=(�mg) versus  for (n1; n2) = f(1; 2); (2; 3); (1; 4)g. The points plotted
were obtained through numeric integration. As predicted, the function is a triangular waveform of
period 2�=(n1n2) and of amplitude 1=(n22 � n21).
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Chapter 7

Conclusion

A novel technology for planar part manipulation has been presented based on a grip-

perless, mechanically-simple device, called the Universal Planar Manipulator (UPM). Our main

contribution has been to show that the UPM, despite its minimalism (3 degrees of freedom) can

manipulate several objects in parallel. This is due to the fact that Coulomb friction is non-linear on

sliding velocity, which implies that the space of rotation friction fields is not closed under addition.

Two control algorithms have been presented: one based on a sequence of rotations and another

based on a local primitive called the jet. We expect this technology, due to its simplicity to be ap-

pealing to existing industries (automation, food handling, etc.) and to inspire novel devices such as

toys and interactive desks.

Future work with the UPM will include (a) the manipulation of generic objects such as

tools, bottles, and books, which will require more sophisticated vision software and the ability to

rotate parts, e.g., by applying localized force couples; (b) manipulation in other non-linear force-

generation environments such as magnetic fields and fluids; (c) redesign/integration of actuators to
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reduce the UPM’s total cost and weight: voice coils could be replaced by either piezo or polymeric

(artificial muscle) actuators.
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